Ultrafast Fabrication of Lignin-Encapsulated Silica Nanoparticles Reinforced Conductive Hydrogels with High Elasticity and Self-Adhesion for Strain Sensors

材料科学 自愈水凝胶 纳米颗粒 导电体 胶粘剂 复合材料 聚合物 纳米技术 化学工程 高分子化学 工程类 图层(电子)
作者
Haonan Zhao,Sanwei Hao,Qingjin Fu,Xinrui Zhang,Lei Meng,Feng Xu,Jun Yang
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (11): 5258-5272 被引量:182
标识
DOI:10.1021/acs.chemmater.2c00934
摘要

Conductive hydrogels are receiving considerable attention because of their important applications, such as flexible wearable electronic, human-machine interfaces, and smart/soft robotics. However, the insufficient mechanical performance and inferior adhesive capability severely hinder the potential applications in such an emerging field. Herein, a highly elastic conductive hydrogel that integrated mechanical robustness, self-adhesiveness, UV-filtering, and stable electrical performance was achieved by the synergistic effect of sulfonated lignin-coated silica nanoparticles (LSNs), polyacrylamide (PAM) chains, and ferric ions (Fe3+). In detail, the dynamic redox reaction was constructed between the catechol groups of LSNs and Fe3+, which could promote the rapid gelation of the acrylamide (AM) monomers in 60 s. The optimized conductive hydrogels containing 1.5 wt % LSNs as the dynamic junction points exhibited the excellent elasticity (<15% hysteresis ratio), high stretchability (∼1100% elongation), and improved mechanical robustness (tensile and compressive strength of ∼180 kPa and ∼480 kPa). Notably, the abundant catechol groups of LSNs endowed the conductive hydrogels with the long-lasting and robust self-adhesion, enabling seamless adhesion to the human skin. Meanwhile, the catechol groups also provided an exceptional UV-blocking capability (∼95.1%) for the conductive hydrogels. The combined advantages of the conductive hydrogels were manifested in flexible sensors for the high-fidelity detection of various mechanical deformations over a wide range of strain (10–200%) with good repeatability and stability. We believed that the designed conductive hydrogels may become a promising candidate material in future flexible wearable electronics for long-term and stable human movements monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SH发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
在水一方应助温柔柜子采纳,获得10
2秒前
俗人发布了新的文献求助10
2秒前
3秒前
初七完成签到 ,获得积分10
3秒前
3秒前
科目三应助妮妮钴采纳,获得10
5秒前
Twonej应助于大本事采纳,获得30
5秒前
汉堡包应助瘦瘦的枫叶采纳,获得10
5秒前
小韩完成签到,获得积分10
5秒前
QYZ发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
Lidanni发布了新的文献求助10
8秒前
8秒前
9秒前
肆汐发布了新的文献求助10
10秒前
酷波er应助温wenwen采纳,获得10
11秒前
戴衡霞完成签到 ,获得积分10
11秒前
TRISTE发布了新的文献求助10
11秒前
科研通AI6.1应助黄海采纳,获得10
11秒前
星辰大海应助快乐的寄容采纳,获得10
12秒前
烟花应助快乐的寄容采纳,获得10
12秒前
852应助快乐的寄容采纳,获得10
12秒前
领导范儿应助快乐的寄容采纳,获得10
12秒前
赘婿应助快乐的寄容采纳,获得10
13秒前
13秒前
领导范儿应助快乐的寄容采纳,获得10
13秒前
情怀应助快乐的寄容采纳,获得10
13秒前
Akim应助快乐的寄容采纳,获得10
13秒前
哆啦A梦发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
科研通AI6.1应助zixi采纳,获得10
15秒前
15秒前
漫步云端完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Processing of reusable surgical textiles for use in health care facilities 500
Population genetics 2nd edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5806972
求助须知:如何正确求助?哪些是违规求助? 5859292
关于积分的说明 15519979
捐赠科研通 4931758
什么是DOI,文献DOI怎么找? 2655443
邀请新用户注册赠送积分活动 1601985
关于科研通互助平台的介绍 1557112