亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Heterogeneous Domain Adaptation With Adversarial Neural Representation Learning: Experiments on E-Commerce and Cybersecurity

计算机科学 域适应 机器学习 人工智能 杠杆(统计) 人工神经网络 适应(眼睛) 特征学习 领域(数学分析) 学习迁移 数学 数学分析 物理 分类器(UML) 光学
作者
Mohammadreza Ebrahimi,Yidong Chai,Hao Helen Zhang,Hsinchun Chen
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (2): 1862-1875 被引量:7
标识
DOI:10.1109/tpami.2022.3163338
摘要

Learning predictive models in new domains with scarce training data is a growing challenge in modern supervised learning scenarios. This incentivizes developing domain adaptation methods that leverage the knowledge in known domains (source) and adapt to new domains (target) with a different probability distribution. This becomes more challenging when the source and target domains are in heterogeneous feature spaces, known as heterogeneous domain adaptation (HDA). While most HDA methods utilize mathematical optimization to map source and target data to a common space, they suffer from low transferability. Neural representations have proven to be more transferable; however, they are mainly designed for homogeneous environments. Drawing on the theory of domain adaptation, we propose a novel framework, Heterogeneous Adversarial Neural Domain Adaptation (HANDA), to effectively maximize the transferability in heterogeneous environments. HANDA conducts feature and distribution alignment in a unified neural network architecture and achieves domain invariance through adversarial kernel learning. Three experiments were conducted to evaluate the performance against the state-of-the-art HDA methods on major image and text e-commerce benchmarks. HANDA shows statistically significant improvement in predictive performance. The practical utility of HANDA was shown in real-world dark web online markets. HANDA is an important step towards successful domain adaptation in e-commerce applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shane发布了新的文献求助10
1秒前
紫色蒙面侠完成签到,获得积分10
14秒前
烟花应助紫色蒙面侠采纳,获得10
21秒前
22秒前
29秒前
44秒前
44秒前
44秒前
morena发布了新的文献求助10
50秒前
科研通AI5应助yyy采纳,获得10
50秒前
有魅力的书本完成签到 ,获得积分10
56秒前
58秒前
yyy发布了新的文献求助10
1分钟前
热心易绿完成签到 ,获得积分10
1分钟前
123123完成签到 ,获得积分10
1分钟前
斯寜应助科研通管家采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
Owen应助lisen采纳,获得10
1分钟前
123完成签到 ,获得积分10
1分钟前
爆米花应助Kevin采纳,获得10
1分钟前
阿乌大王完成签到,获得积分10
1分钟前
Calyn完成签到 ,获得积分10
1分钟前
caca完成签到,获得积分0
1分钟前
2分钟前
2分钟前
lisen发布了新的文献求助10
2分钟前
www发布了新的文献求助10
2分钟前
2分钟前
Cosmosurfer完成签到,获得积分10
2分钟前
2分钟前
lisen完成签到,获得积分10
2分钟前
3分钟前
tszjw168完成签到 ,获得积分10
3分钟前
3分钟前
肆月完成签到 ,获得积分10
3分钟前
sailingluwl完成签到,获得积分10
3分钟前
豆子完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795552
求助须知:如何正确求助?哪些是违规求助? 3340566
关于积分的说明 10300555
捐赠科研通 3057098
什么是DOI,文献DOI怎么找? 1677428
邀请新用户注册赠送积分活动 805404
科研通“疑难数据库(出版商)”最低求助积分说明 762507