四元数
对偶四元数
数学
特征向量
奇异值分解
对偶(语法数字)
厄米矩阵
基质(化学分析)
极小极大
域代数上的
纯数学
算法
数学优化
几何学
艺术
物理
文学类
材料科学
量子力学
复合材料
作者
Ling Chen,Liqun Qi,Hong Yan
出处
期刊:Cornell University - arXiv
日期:2022-01-01
被引量:3
标识
DOI:10.48550/arxiv.2203.03161
摘要
Dual quaternions can represent rigid body motion in 3D spaces, and have found wide applications in robotics, 3D motion modelling and control, and computer graphics. In this paper, we introduce three different right linear independency for a set of dual quaternion vectors, and study some related basic properties for the set of dual quaternion vectors and dual quaternion matrices. We present a minimax principle for right eigenvalues of dual quaternion Hermitian matrices. Based upon a newly established Cauchy-Schwarz inequality for dual quaternion vectors and singular value decomposition of dual quaternion matrices, we propose an important inequality for singular values of dual quaternion matrices. We finally introduce the concept of generalized inverse of dual quaternion matrices, and present the necessary and sufficient conditions for a dual quaternion matrix to be one of four types of generalized inverses of another dual quaternion matrix.
科研通智能强力驱动
Strongly Powered by AbleSci AI