亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic Dental Plaque Segmentation Based on Local-to-Global Features Fused Self-Attention Network.

计算机科学 人工智能 分割 像素 计算机视觉 深度学习 模式识别(心理学) 图像分割
作者
Shuai Li,Yuting Guo,Zhennan Pang,Wenfeng Song,Aimin Hao,Bin Xia,Hong Qin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (5): 2240-2251
标识
DOI:10.1109/jbhi.2022.3141773
摘要

The accurate detection of dental plaque at an early stage will definitely prevent periodontal diseases and dental caries. However, it remains difficult for the current dental examination to accurately recognize dental plaque without using medical dyeing reagent due to the low contrast between dental plaque and healthy teeth. To combat this problem, this paper proposes a novel network enhanced by a self-attention module for intelligent dental plaque segmentation. The key motivation is to directly utilize oral endoscope images (bypassing the need for dyeing reagent) and get accurate pixel-level dental plaque segmentation results. The algorithm needs to conduct self-attention at the super-pixel level and fuse the super-pixels' local-to-global features. Our newly-designed network architecture will afford the simultaneous fusion of multiple-scale complementary information guided by the powerful deep learning paradigm. The critical fused information includes the statistical distribution of the plaques color, the heat kernel signature (HKS) based local-to-global structure relationship, and the circle-LBP based local texture pattern in the nearby regions centering around the plaque area. To further refine the fuzed multiple-scale features, we devise an attention module based on CNN, which could focalize the regions of interest in plaque more easily, especially for many challenging cases. Extensive experiments and comprehensive evaluations confirm that, for a small-scale training dataset, our method could outperform the state-of-the-art methods. Meanwhile, the user studies verify the claim that our method is more accurate than conventional dental practice conducted by experienced dentists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
完美世界应助科研通管家采纳,获得10
18秒前
Orange应助阿尔喷斯少年采纳,获得10
21秒前
魔幻的妖丽完成签到 ,获得积分10
28秒前
bc完成签到,获得积分10
32秒前
天天快乐应助付创采纳,获得10
35秒前
思源应助幸运小猫采纳,获得10
36秒前
ie发布了新的文献求助10
42秒前
1分钟前
得咎完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
di完成签到,获得积分10
1分钟前
豌豆完成签到 ,获得积分10
1分钟前
张哈完成签到 ,获得积分10
1分钟前
GingerF应助Aman采纳,获得100
1分钟前
1分钟前
付创发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
康康完成签到 ,获得积分10
2分钟前
搜集达人应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
小蘑菇应助科研通管家采纳,获得30
2分钟前
Ecokarster应助直率的抽屉采纳,获得10
2分钟前
2分钟前
爱学习的曼卉完成签到,获得积分10
2分钟前
付创完成签到,获得积分10
2分钟前
ie完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
落落洛栖发布了新的文献求助10
2分钟前
可一可再完成签到 ,获得积分10
2分钟前
Dryang完成签到 ,获得积分10
2分钟前
爆米花应助CelestialSummer采纳,获得10
2分钟前
Weiyu完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
Dan1mple完成签到 ,获得积分10
3分钟前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4639690
求助须知:如何正确求助?哪些是违规求助? 4032722
关于积分的说明 12476085
捐赠科研通 3720098
什么是DOI,文献DOI怎么找? 2053138
邀请新用户注册赠送积分活动 1084248
科研通“疑难数据库(出版商)”最低求助积分说明 966131