亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Pyramidal Residual Networks for Spectral–Spatial Hyperspectral Image Classification

计算机科学 残余物 高光谱成像 卷积神经网络 人工智能 模式识别(心理学) 判别式 冗余(工程) 特征(语言学) 深度学习 Boosting(机器学习) 降维 上下文图像分类 数据冗余 算法 图像(数学) 操作系统 哲学 语言学
作者
Mercedes E. Paoletti,Juan M. Haut,Rubén Fernández-Beltrán,Javier Plaza,Antonio Plaza,Filiberto Pla
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (2): 740-754 被引量:460
标识
DOI:10.1109/tgrs.2018.2860125
摘要

Convolutional neural networks (CNNs) exhibit good performance in image processing tasks, pointing themselves as the current state-of-the-art of deep learning methods. However, the intrinsic complexity of remotely sensed hyperspectral images still limits the performance of many CNN models. The high dimensionality of the HSI data, together with the underlying redundancy and noise, often makes the standard CNN approaches unable to generalize discriminative spectral-spatial features. Moreover, deeper CNN architectures also find challenges when additional layers are added, which hampers the network convergence and produces low classification accuracies. In order to mitigate these issues, this paper presents a new deep CNN architecture specially designed for the HSI data. Our new model pursues to improve the spectral-spatial features uncovered by the convolutional filters of the network. Specifically, the proposed residual-based approach gradually increases the feature map dimension at all convolutional layers, grouped in pyramidal bottleneck residual blocks, in order to involve more locations as the network depth increases while balancing the workload among all units, preserving the time complexity per layer. It can be seen as a pyramid, where the deeper the blocks, the more feature maps can be extracted. Therefore, the diversity of high-level spectral-spatial attributes can be gradually increased across layers to enhance the performance of the proposed network with the HSI data. Our experiments, conducted using four well-known HSI data sets and 10 different classification techniques, reveal that our newly developed HSI pyramidal residual model is able to provide competitive advantages (in terms of both classification accuracy and computational time) over the state-of-the-art HSI classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LJL完成签到 ,获得积分10
2秒前
19秒前
20秒前
劳健龙完成签到 ,获得积分0
20秒前
情怀应助薄荷采纳,获得10
22秒前
荣峰伟发布了新的文献求助10
26秒前
木麻黄完成签到 ,获得积分0
26秒前
34秒前
Otter完成签到,获得积分10
51秒前
WANG完成签到 ,获得积分10
51秒前
1分钟前
Eneion发布了新的文献求助20
1分钟前
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
mr_beard完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
荆棘鸟发布了新的文献求助10
1分钟前
可爱的函函应助荆棘鸟采纳,获得10
2分钟前
2分钟前
2分钟前
Lialia完成签到 ,获得积分10
2分钟前
开心的小馒头完成签到,获得积分10
2分钟前
坚强白凝完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
郜尔阳发布了新的文献求助10
2分钟前
2分钟前
君临天下完成签到,获得积分10
2分钟前
Eileen完成签到 ,获得积分10
2分钟前
似水流年完成签到 ,获得积分10
3分钟前
3分钟前
郜尔阳完成签到,获得积分10
3分钟前
董羽佳完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Proposals That Work: A Guide for Planning Dissertations and Grant Proposals 888
A Brief Primer on the Concept of the Neuroweapon for U.S. Military Medical Personnel 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4705876
求助须知:如何正确求助?哪些是违规求助? 4072271
关于积分的说明 12592278
捐赠科研通 3773267
什么是DOI,文献DOI怎么找? 2084364
邀请新用户注册赠送积分活动 1111444
科研通“疑难数据库(出版商)”最低求助积分说明 989201