已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning modeling for predicting hospital readmission following lumbar laminectomy

医学 椎板切除术 腰椎 外科 脊髓 精神科
作者
Saisanjana Kalagara,Adam E. M. Eltorai,Wesley M. Durand,J. Mason DePasse,Alan H. Daniels
出处
期刊:Journal of neurosurgery [Journal of Neurosurgery Publishing Group]
卷期号:30 (3): 344-352 被引量:67
标识
DOI:10.3171/2018.8.spine1869
摘要

OBJECTIVE Hospital readmission contributes substantial costs to the healthcare system. The purpose of this investigation was to create a predictive machine learning model to identify lumbar laminectomy patients at risk for postoperative hospital readmission. METHODS Patients who had undergone a lumbar laminectomy procedure in the period from 2011 to 2014 were isolated from the American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) database. Demographic characteristics and clinical factors, including complications, comorbidities, length of stay, age, and body mass index, were analyzed in relation to whether or not the patients had been readmitted to the hospital within 30 days after their procedure by utilizing independent-samples t-tests. Supervised gradient boosting machine learning was then used to create two models to predict readmission—one with all collected patient variables and one with only the variables known prior to hospital discharge. RESULTS A total of 26,869 patients were evaluated, 5.59% (1501 patients) of whom had an unplanned readmission to the hospital within 30 days of their procedure. Readmitted patients were older and had a greater number of complications and comorbidities, longer operative time, longer hospital stay, higher BMI, and higher work relative value unit (RVU) operation score (p < 0.01). They also had a worse health status prior to surgery (p < 0.01) and were more likely to be sent to a skilled discharge destination postoperatively (p < 0.01). The model with all patient variables accurately identified 49.6% of readmissions with an overall accuracy of 95.33% (area under the curve [AUC] = 0.8059), with postdischarge complications and comorbidities as the most important predictors. The predictive model built with only clinical information known predischarge identified 40.5% of readmitted patients with an accuracy of 79.55% (AUC = 0.6901), with discharge destination, comorbidities, and American Society of Anesthesiologists (ASA) classification as the most influential factors in identifying readmitted patients. CONCLUSIONS In this study, the authors analyzed hospital readmissions following laminectomy and developed predictive models to identify readmitted patients with an accuracy of over 95% using all variables and over 79% when using only predischarge variables. Using only the variables available predischarge, the authors created a model capable of predicting 40% of the readmitted patients. This study provides data that will assist in the development of predictive models for readmission and the creation of interventions to prevent readmission in high-risk patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多喝水完成签到 ,获得积分10
刚刚
刚刚
弧光完成签到 ,获得积分0
刚刚
完美的冬灵完成签到 ,获得积分10
1秒前
番茄鱼完成签到 ,获得积分10
1秒前
2秒前
zyjsunye完成签到 ,获得积分10
2秒前
3秒前
啦啦啦完成签到,获得积分10
3秒前
科研通AI6应助万声采纳,获得30
3秒前
醉熏的幻灵完成签到 ,获得积分10
4秒前
Lynny完成签到 ,获得积分0
4秒前
5秒前
小鸡完成签到 ,获得积分10
5秒前
Laraineww完成签到 ,获得积分10
5秒前
卡拉蜜儿发布了新的文献求助20
5秒前
笑点低的悒完成签到 ,获得积分10
5秒前
去码头整点薯条完成签到 ,获得积分10
6秒前
可爱的函函应助片尾曲采纳,获得10
6秒前
Zr完成签到,获得积分10
6秒前
野生菜狗发布了新的文献求助10
6秒前
大方听白完成签到 ,获得积分10
6秒前
少川完成签到 ,获得积分10
6秒前
7秒前
anya完成签到,获得积分10
7秒前
淡定友有发布了新的文献求助10
8秒前
汉堡包应助旭旭采纳,获得10
8秒前
嘿嘿应助jy采纳,获得10
9秒前
Lyw完成签到 ,获得积分10
9秒前
季刘杰完成签到 ,获得积分10
9秒前
9秒前
9秒前
bkagyin应助jiaolulu采纳,获得10
9秒前
完美天蓝完成签到 ,获得积分10
10秒前
屠夫9441完成签到,获得积分10
10秒前
周杰完成签到,获得积分10
10秒前
CHZBH发布了新的文献求助10
11秒前
科研fw完成签到 ,获得积分10
11秒前
三泥完成签到,获得积分10
12秒前
111完成签到 ,获得积分10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5334237
求助须知:如何正确求助?哪些是违规求助? 4472439
关于积分的说明 13920086
捐赠科研通 4366257
什么是DOI,文献DOI怎么找? 2398949
邀请新用户注册赠送积分活动 1392120
关于科研通互助平台的介绍 1362828

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10