稳健性(进化)
融合
计算机科学
传感器融合
算法
可靠性(半导体)
信息融合
滤波器(信号处理)
人工智能
噪音(视频)
磁道(磁盘驱动器)
国家(计算机科学)
卡尔曼滤波器
数据关联
启发式
跟踪(教育)
计算机视觉
化学
功率(物理)
基因
哲学
物理
图像(数学)
操作系统
量子力学
生物化学
语言学
教育学
心理学
作者
Dan Yang,JI Hong-bing,Gao Yongchan
标识
DOI:10.1016/j.inffus.2018.06.009
摘要
This paper addresses the problem of track fusion for unordered distributed sensors with unknown measurement noise. A robust Dempster–Shafer (D–S) fusion algorithm is proposed, which includes three parts, namely, the local track estimation, the track association, and the state fusion. First, a labeling VB-PHD filter is derived to present target states with track labels and the unknown measurement noises of local sensors. Next, a heuristic D–S method is proposed to determine the relationship of local tracks and fused tracks, where the accumulated information is taken into account. Finally, a fusion method is given to show the state fusion results, which can fully utilize local state estimates and measurement noise information. Simulation results are provided to illustrate the high precision of tracking and good robustness, comparing with the traditional methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI