Prognostic values of GMPS, PR, CD40, and p21 in ovarian cancer

卵巢癌 肿瘤科 医学 癌症 内科学 生物
作者
Ping Wang,Zengli Zhang,Yujie Ma,Jun Lu,Hu Zhao,Shuiliang Wang,Ming Jen Tan,Bingyan Li
出处
期刊:PeerJ [PeerJ]
卷期号:7: e6301-e6301 被引量:21
标识
DOI:10.7717/peerj.6301
摘要

Early detection and prediction of prognosis and treatment responses are all the keys in improving survival of ovarian cancer patients. This study profiled an ovarian cancer progression model to identify prognostic biomarkers for ovarian cancer patients. Mouse ovarian surface epithelial cells (MOSECs) can undergo spontaneous malignant transformation in vitro cell culture. These were used as a model of ovarian cancer progression for alterations in gene expression and signaling detected using the Illumina HiSeq2000 Next-Generation Sequencing platform and bioinformatical analyses. The differential expression of four selected genes was identified using the gene expression profiling interaction analysis (http://gepia.cancer-pku.cn/) and then associated with survival in ovarian cancer patients using the Cancer Genome Atlas dataset and the online Kaplan-Meier Plotter (http://www.kmplot.com) data. The data showed 263 aberrantly expressed genes, including 182 up-regulated and 81 down-regulated genes between the early and late stages of tumor progression in MOSECs. The bioinformatic data revealed four genes (i.e., guanosine 5'-monophosphate synthase (GMPS), progesterone receptor (PR), CD40, and p21 (cyclin-dependent kinase inhibitor 1A)) to play an important role in ovarian cancer progression. Furthermore, the Cancer Genome Atlas dataset validated the differential expression of these four genes, which were associated with prognosis in ovarian cancer patients. In conclusion, this study profiled differentially expressed genes using the ovarian cancer progression model and identified four (i.e., GMPS, PR, CD40, and p21) as prognostic markers for ovarian cancer patients. Future studies of prospective patients could further verify the clinical usefulness of this four-gene signature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助syy采纳,获得10
1秒前
2秒前
2秒前
2秒前
3秒前
pluto应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
解语花031发布了新的文献求助30
4秒前
啊阿阿阿沐完成签到,获得积分10
5秒前
11发布了新的文献求助10
6秒前
7秒前
13秒前
Zzh完成签到,获得积分10
14秒前
16秒前
laber应助越谦阿亚采纳,获得20
16秒前
锦七完成签到,获得积分10
17秒前
赘婿应助斑驳的落叶采纳,获得10
22秒前
彩色的续完成签到,获得积分10
23秒前
Rrr发布了新的文献求助10
23秒前
神勇语柳完成签到,获得积分20
25秒前
斑驳的落叶完成签到,获得积分10
26秒前
maoxinnan发布了新的文献求助10
27秒前
32秒前
32秒前
March完成签到,获得积分10
32秒前
Polylactic完成签到 ,获得积分10
33秒前
snail01完成签到,获得积分10
33秒前
36秒前
36秒前
大个应助Yolo采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1400
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Signals, Systems, and Signal Processing 880
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5837963
求助须知:如何正确求助?哪些是违规求助? 6128085
关于积分的说明 15600075
捐赠科研通 4956196
什么是DOI,文献DOI怎么找? 2671456
邀请新用户注册赠送积分活动 1616661
关于科研通互助平台的介绍 1571733