Prognostic values of GMPS, PR, CD40, and p21 in ovarian cancer

卵巢癌 肿瘤科 医学 癌症 内科学 生物
作者
Ping Wang,Zengli Zhang,Yujie Ma,Jun Lu,Hu Zhao,Shuiliang Wang,Ming Jen Tan,Bingyan Li
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:7: e6301-e6301 被引量:21
标识
DOI:10.7717/peerj.6301
摘要

Early detection and prediction of prognosis and treatment responses are all the keys in improving survival of ovarian cancer patients. This study profiled an ovarian cancer progression model to identify prognostic biomarkers for ovarian cancer patients. Mouse ovarian surface epithelial cells (MOSECs) can undergo spontaneous malignant transformation in vitro cell culture. These were used as a model of ovarian cancer progression for alterations in gene expression and signaling detected using the Illumina HiSeq2000 Next-Generation Sequencing platform and bioinformatical analyses. The differential expression of four selected genes was identified using the gene expression profiling interaction analysis (http://gepia.cancer-pku.cn/) and then associated with survival in ovarian cancer patients using the Cancer Genome Atlas dataset and the online Kaplan-Meier Plotter (http://www.kmplot.com) data. The data showed 263 aberrantly expressed genes, including 182 up-regulated and 81 down-regulated genes between the early and late stages of tumor progression in MOSECs. The bioinformatic data revealed four genes (i.e., guanosine 5'-monophosphate synthase (GMPS), progesterone receptor (PR), CD40, and p21 (cyclin-dependent kinase inhibitor 1A)) to play an important role in ovarian cancer progression. Furthermore, the Cancer Genome Atlas dataset validated the differential expression of these four genes, which were associated with prognosis in ovarian cancer patients. In conclusion, this study profiled differentially expressed genes using the ovarian cancer progression model and identified four (i.e., GMPS, PR, CD40, and p21) as prognostic markers for ovarian cancer patients. Future studies of prospective patients could further verify the clinical usefulness of this four-gene signature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Liufgui应助fixit采纳,获得10
3秒前
3秒前
3秒前
4秒前
Uaena完成签到,获得积分10
4秒前
楠楠发布了新的文献求助10
4秒前
Surge发布了新的文献求助10
5秒前
jingtanhao完成签到,获得积分10
5秒前
5秒前
KKKZ发布了新的文献求助10
6秒前
7秒前
桐桐应助读书的时候采纳,获得10
7秒前
liya发布了新的文献求助10
8秒前
斯文败类应助Xx丶采纳,获得10
9秒前
青岚发布了新的文献求助10
9秒前
复杂的一一完成签到,获得积分10
11秒前
Surge完成签到,获得积分10
11秒前
12秒前
Struggle发布了新的文献求助10
12秒前
12秒前
wwwweer完成签到,获得积分10
13秒前
hyj完成签到,获得积分10
13秒前
顾矜应助zxzb采纳,获得10
14秒前
14秒前
星辰大海应助开朗的踏歌采纳,获得10
15秒前
小杜发布了新的文献求助10
15秒前
16秒前
图图完成签到 ,获得积分10
16秒前
爆米花应助刘太狼采纳,获得10
17秒前
周娅敏发布了新的文献求助10
18秒前
甜甜玫瑰应助研友_Z7Xdl8采纳,获得10
18秒前
orixero应助中原第一深情采纳,获得10
19秒前
19秒前
19秒前
钱塘郎中完成签到,获得积分0
20秒前
ZW完成签到,获得积分20
20秒前
21秒前
kai发布了新的文献求助10
23秒前
李健应助小王同学采纳,获得10
25秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097565
求助须知:如何正确求助?哪些是违规求助? 3635255
关于积分的说明 11522834
捐赠科研通 3345513
什么是DOI,文献DOI怎么找? 1838684
邀请新用户注册赠送积分活动 906224
科研通“疑难数据库(出版商)”最低求助积分说明 823497