Ensemble docking of multiple protein structures: Considering protein structural variations in molecular docking

对接(动物) 蛋白质-配体对接 寻找对接的构象空间 虚拟筛选 码头 大分子对接 蛋白质结构 计算机科学 算法 化学 分子动力学 计算化学 生物化学 医学 护理部
作者
Sheng‐You Huang,Xiaoqin Zou
出处
期刊:Proteins [Wiley]
卷期号:66 (2): 399-421 被引量:350
标识
DOI:10.1002/prot.21214
摘要

Abstract One approach to incorporate protein flexibility in molecular docking is the use of an ensemble consisting of multiple protein structures. Sequentially docking each ligand into a large number of protein structures is computationally too expensive to allow large‐scale database screening. It is challenging to achieve a good balance between docking accuracy and computational efficiency. In this work, we have developed a fast, novel docking algorithm utilizing multiple protein structures, referred to as ensemble docking, to account for protein structural variations. The algorithm can simultaneously dock a ligand into an ensemble of protein structures and automatically select an optimal protein structure that best fits the ligand by optimizing both ligand coordinates and the conformational variable m , where m represents the m ‐th structure in the protein ensemble. The docking algorithm was validated on 10 protein ensembles containing 105 crystal structures and 87 ligands in terms of binding mode and energy score predictions. A success rate of 93% was obtained with the criterion of root‐mean‐square deviation <2.5 Å if the top five orientations for each ligand were considered, comparable to that of sequential docking in which scores for individual docking are merged into one list by re‐ranking, and significantly better than that of single rigid‐receptor docking (75% on average). Similar trends were also observed in binding score predictions and enrichment tests of virtual database screening. The ensemble docking algorithm is computationally efficient, with a computational time comparable to that for docking a ligand into a single protein structure. In contrast, the computational time for the sequential docking method increases linearly with the number of protein structures in the ensemble. The algorithm was further evaluated using a more realistic ensemble in which the corresponding bound protein structures of inhibitors were excluded. The results show that ensemble docking successfully predicts the binding modes of the inhibitors, and discriminates the inhibitors from a set of noninhibitors with similar chemical properties. Although multiple experimental structures were used in the present work, our algorithm can be easily applied to multiple protein conformations generated by computational methods, and helps improve the efficiency of other existing multiple protein structure(MPS)‐based methods to accommodate protein flexibility. Proteins 2007. © 2006 Wiley‐Liss, Inc.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
九九完成签到,获得积分10
刚刚
西瓜发布了新的文献求助10
1秒前
欢喜火完成签到,获得积分10
1秒前
wpeng326完成签到,获得积分10
2秒前
roy_chiang完成签到,获得积分0
2秒前
dong发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
科研狗发布了新的文献求助10
5秒前
九九发布了新的文献求助20
5秒前
5秒前
李爱国应助北落采纳,获得10
5秒前
TaoJ应助猫抓板采纳,获得10
6秒前
6秒前
7秒前
chenqiumu应助ccc采纳,获得30
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
希望天下0贩的0应助ZZ采纳,获得10
8秒前
8秒前
oceandad发布了新的文献求助10
8秒前
10秒前
万能图书馆应助YT采纳,获得10
10秒前
卡布达完成签到,获得积分10
11秒前
11秒前
修仙中应助科研通管家采纳,获得10
12秒前
蓝天应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
修仙中应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助263采纳,获得10
12秒前
12秒前
烟花应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
12秒前
所所应助科研通管家采纳,获得10
12秒前
小小油应助科研通管家采纳,获得100
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626363
求助须知:如何正确求助?哪些是违规求助? 4712202
关于积分的说明 14958524
捐赠科研通 4781493
什么是DOI,文献DOI怎么找? 2554266
邀请新用户注册赠送积分活动 1515993
关于科研通互助平台的介绍 1476327