亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ensemble docking of multiple protein structures: Considering protein structural variations in molecular docking

对接(动物) 蛋白质-配体对接 寻找对接的构象空间 虚拟筛选 码头 大分子对接 蛋白质结构 计算机科学 算法 化学 分子动力学 计算化学 生物化学 医学 护理部
作者
Sheng‐You Huang,Xiaoqin Zou
出处
期刊:Proteins [Wiley]
卷期号:66 (2): 399-421 被引量:350
标识
DOI:10.1002/prot.21214
摘要

Abstract One approach to incorporate protein flexibility in molecular docking is the use of an ensemble consisting of multiple protein structures. Sequentially docking each ligand into a large number of protein structures is computationally too expensive to allow large‐scale database screening. It is challenging to achieve a good balance between docking accuracy and computational efficiency. In this work, we have developed a fast, novel docking algorithm utilizing multiple protein structures, referred to as ensemble docking, to account for protein structural variations. The algorithm can simultaneously dock a ligand into an ensemble of protein structures and automatically select an optimal protein structure that best fits the ligand by optimizing both ligand coordinates and the conformational variable m , where m represents the m ‐th structure in the protein ensemble. The docking algorithm was validated on 10 protein ensembles containing 105 crystal structures and 87 ligands in terms of binding mode and energy score predictions. A success rate of 93% was obtained with the criterion of root‐mean‐square deviation <2.5 Å if the top five orientations for each ligand were considered, comparable to that of sequential docking in which scores for individual docking are merged into one list by re‐ranking, and significantly better than that of single rigid‐receptor docking (75% on average). Similar trends were also observed in binding score predictions and enrichment tests of virtual database screening. The ensemble docking algorithm is computationally efficient, with a computational time comparable to that for docking a ligand into a single protein structure. In contrast, the computational time for the sequential docking method increases linearly with the number of protein structures in the ensemble. The algorithm was further evaluated using a more realistic ensemble in which the corresponding bound protein structures of inhibitors were excluded. The results show that ensemble docking successfully predicts the binding modes of the inhibitors, and discriminates the inhibitors from a set of noninhibitors with similar chemical properties. Although multiple experimental structures were used in the present work, our algorithm can be easily applied to multiple protein conformations generated by computational methods, and helps improve the efficiency of other existing multiple protein structure(MPS)‐based methods to accommodate protein flexibility. Proteins 2007. © 2006 Wiley‐Liss, Inc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馆长应助科研通管家采纳,获得10
2秒前
wuju完成签到,获得积分10
4秒前
白华苍松发布了新的文献求助20
7秒前
13秒前
33秒前
大气的尔蓝完成签到,获得积分10
35秒前
38秒前
ZZZ发布了新的文献求助10
44秒前
lixuebin完成签到 ,获得积分10
1分钟前
1分钟前
小事完成签到 ,获得积分10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
literature发布了新的文献求助10
2分钟前
徐lw完成签到 ,获得积分10
2分钟前
2分钟前
Jason发布了新的文献求助10
2分钟前
徐lw关注了科研通微信公众号
2分钟前
NexusExplorer应助Jason采纳,获得10
2分钟前
量子星尘发布了新的文献求助20
2分钟前
小二郎应助literature采纳,获得10
2分钟前
NexusExplorer应助科研通管家采纳,获得10
4分钟前
777完成签到 ,获得积分20
4分钟前
4分钟前
SharFllin关注了科研通微信公众号
4分钟前
4分钟前
结实烧鹅发布了新的文献求助10
4分钟前
4分钟前
4分钟前
安安完成签到,获得积分20
4分钟前
科研通AI5应助结实烧鹅采纳,获得10
4分钟前
SharFllin发布了新的文献求助30
4分钟前
5分钟前
馆长应助科研通管家采纳,获得30
6分钟前
馆长应助科研通管家采纳,获得30
6分钟前
6分钟前
白华苍松发布了新的文献求助20
6分钟前
368DFS发布了新的文献求助10
6分钟前
CipherSage应助368DFS采纳,获得10
7分钟前
领导范儿应助白华苍松采纳,获得10
7分钟前
368DFS完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4851831
求助须知:如何正确求助?哪些是违规求助? 4150311
关于积分的说明 12856815
捐赠科研通 3898457
什么是DOI,文献DOI怎么找? 2142460
邀请新用户注册赠送积分活动 1162226
关于科研通互助平台的介绍 1062463