已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Heat tolerance in plants: An overview

热休克蛋白 细胞生物学 发芽 光合作用 渗透调节剂 生物 活性氧 蛋白激酶A 植物 生物物理学 激酶 生物化学 基因 脯氨酸 氨基酸
作者
Abdul Wahid,Sadia Gelani,Muhammad Ashraf,Majid R. Foolad
出处
期刊:Environmental and Experimental Botany [Elsevier BV]
卷期号:61 (3): 199-223 被引量:3527
标识
DOI:10.1016/j.envexpbot.2007.05.011
摘要

Heat stress due to increased temperature is an agricultural problem in many areas in the world. Transitory or constantly high temperatures cause an array of morpho-anatomical, physiological and biochemical changes in plants, which affect plant growth and development and may lead to a drastic reduction in economic yield. The adverse effects of heat stress can be mitigated by developing crop plants with improved thermotolerance using various genetic approaches. For this purpose, however, a thorough understanding of physiological responses of plants to high temperature, mechanisms of heat tolerance and possible strategies for improving crop thermotolerance is imperative. Heat stress affects plant growth throughout its ontogeny, though heat-threshold level varies considerably at different developmental stages. For instance, during seed germination, high temperature may slow down or totally inhibit germination, depending on plant species and the intensity of the stress. At later stages, high temperature may adversely affect photosynthesis, respiration, water relations and membrane stability, and also modulate levels of hormones and primary and secondary metabolites. Furthermore, throughout plant ontogeny, enhanced expression of a variety of heat shock proteins, other stress-related proteins, and production of reactive oxygen species (ROS) constitute major plant responses to heat stress. In order to cope with heat stress, plants implement various mechanisms, including maintenance of membrane stability, scavenging of ROS, production of antioxidants, accumulation and adjustment of compatible solutes, induction of mitogen-activated protein kinase (MAPK) and calcium-dependent protein kinase (CDPK) cascades, and, most importantly, chaperone signaling and transcriptional activation. All these mechanisms, which are regulated at the molecular level, enable plants to thrive under heat stress. Based on a complete understanding of such mechanisms, potential genetic strategies to improve plant heat-stress tolerance include traditional and contemporary molecular breeding protocols and transgenic approaches. While there are a few examples of plants with improved heat tolerance through the use of traditional breeding protocols, the success of genetic transformation approach has been thus far limited. The latter is due to limited knowledge and availability of genes with known effects on plant heat-stress tolerance, though these may not be insurmountable in future. In addition to genetic approaches, crop heat tolerance can be enhanced by preconditioning of plants under different environmental stresses or exogenous application of osmoprotectants such as glycinebetaine and proline. Acquiring thermotolerance is an active process by which considerable amounts of plant resources are diverted to structural and functional maintenance to escape damages caused by heat stress. Although biochemical and molecular aspects of thermotolerance in plants are relatively well understood, further studies focused on phenotypic flexibility and assimilate partitioning under heat stress and factors modulating crop heat tolerance are imperative. Such studies combined with genetic approaches to identify and map genes (or QTLs) conferring thermotolerance will not only facilitate marker-assisted breeding for heat tolerance but also pave the way for cloning and characterization of underlying genetic factors which could be useful for engineering plants with improved heat tolerance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧凝竹发布了新的文献求助10
2秒前
简单白风完成签到 ,获得积分10
3秒前
小憨憨完成签到,获得积分10
7秒前
kk完成签到 ,获得积分10
9秒前
啊哈哈哈完成签到 ,获得积分10
10秒前
科研通AI2S应助Abiu采纳,获得10
11秒前
小巧凝竹完成签到,获得积分10
12秒前
leave完成签到 ,获得积分10
15秒前
SAXA完成签到,获得积分10
15秒前
善良的数据线完成签到,获得积分10
16秒前
姆姆没买完成签到 ,获得积分0
18秒前
哔噗哔噗完成签到,获得积分10
19秒前
FashionBoy应助嗯嗯嗯嗯嗯采纳,获得10
19秒前
吉祥高趙完成签到 ,获得积分10
20秒前
21秒前
傻瓜完成签到 ,获得积分10
22秒前
kd1412应助研友_841rlL采纳,获得50
24秒前
25秒前
甜田完成签到,获得积分10
26秒前
w1x2123发布了新的文献求助10
29秒前
Lee完成签到 ,获得积分10
30秒前
31秒前
和谐蛋蛋完成签到,获得积分10
32秒前
djdh完成签到 ,获得积分10
32秒前
张哈完成签到 ,获得积分10
33秒前
研友_ngKyqn完成签到,获得积分10
33秒前
kenti2023完成签到 ,获得积分10
35秒前
gaojian完成签到 ,获得积分10
35秒前
chujun_cai完成签到 ,获得积分10
35秒前
不器完成签到 ,获得积分10
37秒前
领导范儿应助xun采纳,获得120
37秒前
张杰列夫完成签到 ,获得积分10
38秒前
云治完成签到,获得积分10
43秒前
zxzx发布了新的文献求助10
45秒前
46秒前
昭荃完成签到 ,获得积分0
46秒前
mujinluo完成签到 ,获得积分10
48秒前
可靠的寒风完成签到,获得积分10
48秒前
兴奋傲柔完成签到 ,获得积分10
49秒前
yywa发布了新的文献求助30
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581232
求助须知:如何正确求助?哪些是违规求助? 3999239
关于积分的说明 12380864
捐赠科研通 3673734
什么是DOI,文献DOI怎么找? 2024727
邀请新用户注册赠送积分活动 1058565
科研通“疑难数据库(出版商)”最低求助积分说明 945295