自适应滤波器
卡尔曼滤波器
分歧(语言学)
计算机科学
核自适应滤波器
衰退
递归滤波器
控制理论(社会学)
集合卡尔曼滤波器
扩展卡尔曼滤波器
递归最小平方滤波器
算法
滤波器设计
滤波器(信号处理)
快速卡尔曼滤波
数学
根升余弦滤波器
解码方法
人工智能
语言学
哲学
计算机视觉
控制(管理)
作者
H.W. Sorenson,Jonah Sacks
标识
DOI:10.1016/s0020-0255(71)80001-4
摘要
A recursive, fading memory filter for time-continuous and time-discrete systems is presented as a means for overcoming the destructive influence of model errors in Kalman filter applications that lead to the occurrence of divergence. This fading memory filter is shown to be uniformly asymptotically stable under basically the same conditions as the Kalman filter and bounds on the error covariance matrix of the filter are given. An adaptive procedure for implementing the procedure is discussed in terms of a scalar example. The ease of implementation of this filter and the highly satisfactory nature of numerical results indicate the efficacy of the procedure as a desirable recursive data processing method.
科研通智能强力驱动
Strongly Powered by AbleSci AI