Improved vanillin production in baker's yeast through in silico design

生物信息学 香兰素 酵母 生产(经济) 生化工程 生物技术 生物 计算生物学 生物化学 工程类 基因 宏观经济学 经济
作者
Ana Rita Brochado,Claudia Matos,Birger Lindberg Møller,Jörgen Hansen,Uffe Hasbro Mortensen,Kiran Raosaheb Patil
出处
期刊:Microbial Cell Factories [Springer Nature]
卷期号:9 (1) 被引量:234
标识
DOI:10.1186/1475-2859-9-84
摘要

Abstract Background Vanillin is one of the most widely used flavouring agents, originally obtained from cured seed pods of the vanilla orchid Vanilla planifolia . Currently vanillin is mostly produced via chemical synthesis. A de novo synthetic pathway for heterologous vanillin production from glucose has recently been implemented in baker's yeast, Saccharamyces cerevisiae . In this study we aimed at engineering this vanillin cell factory towards improved productivity and thereby at developing an attractive alternative to chemical synthesis. Results Expression of a glycosyltransferase from Arabidopsis thaliana in the vanillin producing S. cerevisiae strain served to decrease product toxicity. An in silico metabolic engineering strategy of this vanillin glucoside producing strain was designed using a set of stoichiometric modelling tools applied to the yeast genome-scale metabolic network. Two targets ( PDC1 and GDH1 ) were selected for experimental verification resulting in four engineered strains. Three of the mutants showed up to 1.5 fold higher vanillin β-D-glucoside yield in batch mode, while continuous culture of the Δpdc1 mutant showed a 2-fold productivity improvement. This mutant presented a 5-fold improvement in free vanillin production compared to the previous work on de novo vanillin biosynthesis in baker's yeast. Conclusion Use of constraints corresponding to different physiological states was found to greatly influence the target predictions given minimization of metabolic adjustment (MOMA) as biological objective function. In vivo verification of the targets, selected based on their predicted metabolic adjustment, successfully led to overproducing strains. Overall, we propose and demonstrate a framework for in silico design and target selection for improving microbial cell factories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助Yh.m采纳,获得10
刚刚
liu完成签到,获得积分10
1秒前
2秒前
2秒前
任性迎松发布了新的文献求助10
5秒前
KK完成签到 ,获得积分10
5秒前
NIUBEN发布了新的文献求助10
6秒前
6秒前
可爱迪完成签到,获得积分10
6秒前
慕青应助蒸蒸日上采纳,获得10
10秒前
李健的小迷弟应助NIUBEN采纳,获得10
10秒前
11秒前
可爱迪发布了新的文献求助10
11秒前
一颗星发布了新的文献求助10
15秒前
烟花应助先一采纳,获得10
15秒前
18秒前
sganthem完成签到,获得积分10
18秒前
焦野完成签到,获得积分10
20秒前
21秒前
sganthem发布了新的文献求助10
22秒前
Joey完成签到,获得积分10
22秒前
小二郎应助一颗星采纳,获得10
22秒前
酷酷故事发布了新的文献求助30
25秒前
26秒前
胖胖发布了新的文献求助10
29秒前
32秒前
Sofia发布了新的文献求助10
33秒前
酷酷故事完成签到,获得积分20
33秒前
爆米花应助shirley采纳,获得10
37秒前
gjww应助胖胖采纳,获得10
40秒前
41秒前
44秒前
冷傲雁卉发布了新的文献求助10
45秒前
zhm发布了新的文献求助10
46秒前
47秒前
热情笑旋完成签到,获得积分10
48秒前
Jasper应助oleskarabach采纳,获得10
48秒前
哈哈完成签到 ,获得积分10
49秒前
嘉汐完成签到,获得积分10
49秒前
49秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
Aspect and Predication: The Semantics of Argument Structure 666
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2410562
求助须知:如何正确求助?哪些是违规求助? 2105956
关于积分的说明 5320631
捐赠科研通 1833451
什么是DOI,文献DOI怎么找? 913598
版权声明 560840
科研通“疑难数据库(出版商)”最低求助积分说明 488515