Co-expression modules identified from published immune signatures reveal five distinct immune subtypes in breast cancer

免疫系统 乳腺癌 生物 癌症 免疫学 癌症研究 计算生物学 遗传学
作者
Dominic Amara,Denise M. Wolf,Laura van ′t Veer,Laura J. Esserman,Michael J. Campbell,Christina Yau
出处
期刊:Breast Cancer Research and Treatment [Springer Science+Business Media]
卷期号:161 (1): 41-50 被引量:16
标识
DOI:10.1007/s10549-016-4041-3
摘要

There is a growing body of literature demonstrating that immune-related expression signatures predict breast cancer prognosis and chemo-/targeted-therapy responsiveness. However, it is unclear whether these signatures correlate with each other or represent distinct immune-related signals. We evaluated 57 published immune-related expression signatures in four public breast cancer datasets totaling 3295 samples. For each dataset, we used consensus clustering to group signatures together based on their co-expression pattern. Signatures that were in the same consensus cluster across all four datasets were used to define immune modules. Tumors were then classified into immune subtypes based on their module scores using consensus clustering. Survival analysis was conducted using Cox proportional hazards modeling. Consensus clustering consistently yields four distinct co-expression modules across the datasets. These modules appear to represent distinct immune components and signals, where constituent signatures relate to (1) T-cells and/or B-cells (T/B-cell), (2) interferon (IFN), (3) transforming growth factor beta (TGFB), and (4) core–serum response, dendritic cells, and/or macrophages (CSR). Subtyping of tumors based on these co-expression modules consistently yields subsets that fall into five major immune subtypes: T/B-cell/IFN High, IFN/CSR High, CSR High, TGFB High, and Immune Low. Basal and/or triple-negative breast cancer patients with CSR High tumors have significantly worse outcome relative to those within the T/B-cell/IFN High subtype. Our exploratory study identified four distinct immune co-expression modules (T/B-cell, IFN, TGFB, or CSR) from published immune signatures. Using these modules, we identified five immune subtypes with significant outcome differences in basal breast cancers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dragon发布了新的文献求助10
刚刚
Alice完成签到,获得积分10
1秒前
1秒前
只为更出色完成签到,获得积分10
2秒前
2秒前
叮铃铃完成签到,获得积分10
2秒前
枫叶应助lgj采纳,获得10
2秒前
君衡完成签到 ,获得积分10
2秒前
3秒前
3秒前
garrick发布了新的文献求助20
3秒前
4秒前
4秒前
koko完成签到,获得积分10
4秒前
徐嘎嘎发布了新的文献求助10
4秒前
5秒前
酷波er应助酷酷云朵采纳,获得10
5秒前
6秒前
6秒前
007完成签到,获得积分10
6秒前
7秒前
Wy发布了新的文献求助10
7秒前
安详襄完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
9秒前
甜栗栗子完成签到,获得积分10
10秒前
务实完成签到 ,获得积分10
10秒前
10秒前
感动水杯发布了新的文献求助10
11秒前
无花果应助kk采纳,获得10
11秒前
11秒前
12秒前
NexusExplorer应助zeng采纳,获得10
12秒前
13秒前
感动的又槐完成签到 ,获得积分10
13秒前
情怀应助WENBOZHANG采纳,获得10
13秒前
Lion发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Conceptual Metaphor Theory in World Language Education 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3926171
求助须知:如何正确求助?哪些是违规求助? 3470878
关于积分的说明 10965418
捐赠科研通 3200460
什么是DOI,文献DOI怎么找? 1768360
邀请新用户注册赠送积分活动 857490
科研通“疑难数据库(出版商)”最低求助积分说明 796036