Role of Radiomics in the Prediction of Muscle-invasive Bladder Cancer: A Systematic Review and Meta-analysis

医学 荟萃分析 膀胱癌 无线电技术 置信区间 内科学 系统回顾 林地 接收机工作特性 癌症 梅德林 放射科 政治学 法学
作者
Mieszko Kozikowski,Rodrigo Suarez-Ibarrola,Raúl Osiecki,Konrad Bilski,Christian Gratzke,Shahrokh F. Shariat,Arkadiusz Miernik,Jakub Dobruch
出处
期刊:European urology focus [Elsevier BV]
卷期号:8 (3): 728-738 被引量:60
标识
DOI:10.1016/j.euf.2021.05.005
摘要

Radiomics is a field of science that aims to develop improved methods of medical image analysis by extracting a large number of quantitative features. New data have emerged on the successful application of radiomics and machine-learning techniques to the prediction of muscle-invasive bladder cancer (MIBC).To systematically review the diagnostic performance of radiomic techniques in predicting MIBC.The literature search for relevant studies up to July 2020 was performed in the PubMed and EMBASE databases by two independent reviewers. The meta-analysis was inducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Inclusion criteria comprised studies that evaluated the diagnostic accuracy of radiomic models in predicting MIBC and used pathological examination as the reference standard. For bias assessment, Quality Assessment of Diagnostic Accuracy Studies-2 and Radiomic Quality Score were used. Weighted summary proportions were used to calculate pooled sensitivity and specificity. A linear mixed model was implemented to calculate the hierarchical summary receiver-operating characteristic (HSROC). Meta-regression analyses were performed to explore heterogeneity.Eight studies with a total of 860 patients were included. The summary estimates for sensitivity and specificity in predicting MIBC were 82% (95% confidence interval [CI]: 77-86%) and 81% (95% CI: 76-85%), respectively. The area under HSROC was 0.88. There were no relevant heterogeneity in diagnostic accuracy measures (I2 = 33% and 41% for sensitivity and specificity, respectively), which was confirmed by a subsequent meta-regression analysis.Radiomics shows high diagnostic performance in predicting MIBC. Despite differences in approaches, radiomic models were relatively homogeneous in their diagnostic accuracy. With further improvements, radiomics has the potential to become a useful adjunct in clinical management of bladder cancer.Rapidly evolving imaging analysis methods using artificial intelligence algorithms, called radiomics, show high diagnostic performance in predicting muscle-invasive bladder cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huihui发布了新的文献求助10
1秒前
王奥博发布了新的文献求助20
1秒前
1秒前
剑指天涯完成签到,获得积分10
1秒前
刘佳完成签到 ,获得积分10
1秒前
科研通AI5应助六金采纳,获得10
1秒前
1秒前
smile发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
3秒前
乐乐应助不是山谷采纳,获得10
5秒前
Viva应助激昂的背包采纳,获得20
6秒前
善学以致用应助jason0023采纳,获得10
6秒前
7秒前
糊涂的保温杯完成签到,获得积分10
8秒前
jiemy完成签到,获得积分10
8秒前
8秒前
9秒前
柏林寒冬应助雪野采纳,获得10
10秒前
11秒前
hanch完成签到,获得积分10
11秒前
huihui完成签到,获得积分10
11秒前
12秒前
星夕完成签到 ,获得积分10
12秒前
13秒前
只只发布了新的文献求助10
13秒前
别闹闹发布了新的文献求助10
14秒前
14秒前
无仪宁死发布了新的文献求助20
14秒前
15秒前
15秒前
16秒前
17秒前
六金发布了新的文献求助10
18秒前
酷波er应助xy采纳,获得10
18秒前
顺利念云完成签到,获得积分10
18秒前
炒粉不要放鸡精啊完成签到,获得积分10
19秒前
19秒前
19秒前
zjy完成签到,获得积分10
20秒前
gfrdm发布了新的文献求助10
20秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4292759
求助须知:如何正确求助?哪些是违规求助? 3819416
关于积分的说明 11959776
捐赠科研通 3462774
什么是DOI,文献DOI怎么找? 1899459
邀请新用户注册赠送积分活动 947684
科研通“疑难数据库(出版商)”最低求助积分说明 850398