Identification of glaucoma from fundus images using deep learning techniques

医学 青光眼 眼底(子宫) 验光服务 鉴定(生物学) 眼科 人工智能 计算机视觉 计算机科学 植物 生物
作者
JohnD Akkara,S. Ajitha,M. V. Judy
出处
期刊:Indian Journal of Ophthalmology [Medknow]
卷期号:69 (10): 2702-2709 被引量:46
标识
DOI:10.4103/ijo.ijo_92_21
摘要

Purpose: Glaucoma is one of the preeminent causes of incurable visual disability and blindness across the world due to elevated intraocular pressure within the eyes. Accurate and timely diagnosis is essential for preventing visual disability. Manual detection of glaucoma is a challenging task that needs expertise and years of experience. Methods: In this paper, we suggest a powerful and accurate algorithm using a convolutional neural network (CNN) for the automatic diagnosis of glaucoma. In this work, 1113 fundus images consisting of 660 normal and 453 glaucomatous images from four databases have been used for the diagnosis of glaucoma. A 13-layer CNN is potently trained from this dataset to mine vital features, and these features are classified into either glaucomatous or normal class during testing. The proposed algorithm is implemented in Google Colab, which made the task straightforward without spending hours installing the environment and supporting libraries. To evaluate the effectiveness of our algorithm, the dataset is divided into 70% for training, 20% for validation, and the remaining 10% utilized for testing. The training images are augmented to 12012 fundus images. Results: Our model with SoftMax classifier achieved an accuracy of 93.86%, sensitivity of 85.42%, specificity of 100%, and precision of 100%. In contrast, the model with the SVM classifier achieved accuracy, sensitivity, specificity, and precision of 95.61, 89.58, 100, and 100%, respectively. Conclusion: These results demonstrate the ability of the deep learning model to identify glaucoma from fundus images and suggest that the proposed system can help ophthalmologists in a fast, accurate, and reliable diagnosis of glaucoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
故意的寒安完成签到,获得积分10
刚刚
研友_VZG7GZ应助叶子采纳,获得30
2秒前
马华化完成签到,获得积分0
2秒前
自然的觅海完成签到 ,获得积分10
2秒前
领导范儿应助55666采纳,获得10
2秒前
2秒前
3秒前
cao发布了新的文献求助10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
11哥应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
lemon发布了新的文献求助20
6秒前
nana发布了新的文献求助10
6秒前
sdf64发布了新的文献求助10
7秒前
bkagyin应助谜迪采纳,获得10
7秒前
8秒前
阳光的安南完成签到,获得积分10
8秒前
8秒前
9秒前
13656479046发布了新的文献求助10
9秒前
li发布了新的文献求助10
9秒前
kery完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
FashionBoy应助Han采纳,获得30
11秒前
11秒前
852应助野性的惜蕊采纳,获得10
12秒前
12完成签到,获得积分10
12秒前
追寻飞松发布了新的文献求助10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790327
求助须知:如何正确求助?哪些是违规求助? 3334999
关于积分的说明 10273058
捐赠科研通 3051472
什么是DOI,文献DOI怎么找? 1674703
邀请新用户注册赠送积分活动 802741
科研通“疑难数据库(出版商)”最低求助积分说明 760846