MATEC: A lightweight neural network for online encrypted traffic classification

计算机科学 加密 卷积神经网络 交通分类 钥匙(锁) 网络数据包 服务质量 过程(计算) 数据挖掘 人工智能 计算机网络 深包检验 计算机安全 操作系统
作者
Jin Cheng,Yulei Wu,E Yuepeng,Junling You,Tong Li,Hui Li,Jingguo Ge
出处
期刊:Computer Networks [Elsevier BV]
卷期号:199: 108472-108472 被引量:50
标识
DOI:10.1016/j.comnet.2021.108472
摘要

Increased awareness of privacy protection has led to a surge in the volume of encrypted traffic, which creates a heavy burden for efficient network management (e.g. quality-of-service guarantees). The opacity of encrypted traffic essentially requires high computational overheads to make traffic classification, which is even worse when encrypted traffic surges. However, existing deep learning approaches sacrifice the efficiency to obtain high-precision classification results, which are no longer suitable for scenarios with large volumes of encrypted traffic. In this paper, a lightweight and online approach implemented as MATEC is proposed. The way we optimize the classification process follows the “Maximizing the reuse of thin modules” design principle. The multi-head attention and the convolutional network are adopted in the thin module. Attributed to the one-step interaction of all packets and the parallel computing of the multi-head attention mechanism, a key advantage of our model is that the number of parameters and running time are significantly reduced. In addition, the effectiveness and efficiency of convolutional networks have been proved in traffic classification. Comparisons to the existing state-of-the-art models on three typical datasets demonstrate that the proposed MATEC model has higher accuracy and running efficiency. In addition, the number of parameters is reduced to 1.8% of the state-of-the-art models and the training time halves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
快乐非笑给快乐非笑的求助进行了留言
3秒前
kiltorh完成签到,获得积分10
3秒前
4秒前
6秒前
欢呼的丁真完成签到,获得积分10
11秒前
11秒前
14秒前
云母完成签到 ,获得积分10
16秒前
16秒前
dnmd发布了新的文献求助10
16秒前
曾曾完成签到,获得积分10
19秒前
20秒前
20秒前
TRY发布了新的文献求助10
21秒前
英姑应助超帅青旋采纳,获得10
22秒前
苹果完成签到,获得积分10
24秒前
苹果发布了新的文献求助10
28秒前
SciGPT应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
我是老大应助科研通管家采纳,获得10
30秒前
赘婿应助科研通管家采纳,获得10
30秒前
华仔应助科研通管家采纳,获得10
30秒前
30秒前
31秒前
32秒前
超帅青旋发布了新的文献求助10
35秒前
36秒前
天真从波发布了新的文献求助10
38秒前
40秒前
超帅青旋完成签到,获得积分20
42秒前
KKK研发布了新的文献求助10
45秒前
爱吃饼干的土拨鼠完成签到,获得积分10
47秒前
dududu完成签到,获得积分10
48秒前
48秒前
52秒前
林谷雨完成签到 ,获得积分10
52秒前
56秒前
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781947
求助须知:如何正确求助?哪些是违规求助? 3327479
关于积分的说明 10231578
捐赠科研通 3042395
什么是DOI,文献DOI怎么找? 1669975
邀请新用户注册赠送积分活动 799461
科研通“疑难数据库(出版商)”最低求助积分说明 758822