Performance Analysis of MAU-9 Electronic-Nose MOS Sensor Array Components and ANN Classification Methods for Discrimination of Herb and Fruit Essential Oils

电子鼻 传感器阵列 偏最小二乘回归 芳香 人工智能 模式识别(心理学) 主成分分析 精油 气味 计算机科学 食品科学 机器学习 化学 有机化学
作者
Mansour Rasekh,Hamed Karami,A. D. Wilson,Marek Gancarz
出处
期刊:Chemosensors [Multidisciplinary Digital Publishing Institute]
卷期号:9 (9): 243-243 被引量:51
标识
DOI:10.3390/chemosensors9090243
摘要

The recent development of MAU-9 electronic sensory methods, based on artificial olfaction detection of volatile emissions using an experimental metal oxide semiconductor (MOS)-type electronic-nose (e-nose) device, have provided novel means for the effective discovery of adulterated and counterfeit essential oil-based plant products sold in worldwide commercial markets. These new methods have the potential of facilitating enforcement of regulatory quality assurance (QA) for authentication of plant product genuineness and quality through rapid evaluation by volatile (aroma) emissions. The MAU-9 e-nose system was further evaluated using performance-analysis methods to determine ways for improving on overall system operation and effectiveness in discriminating and classifying volatile essential oils derived from fruit and herbal edible plants. Individual MOS-sensor components in the e-nose sensor array were performance tested for their effectiveness in contributing to discriminations of volatile organic compounds (VOCs) analyzed in headspace from purified essential oils using artificial neural network (ANN) classification. Two additional statistical data-analysis methods, including principal regression (PR) and partial least squares (PLS), were also compared. All statistical methods tested effectively classified essential oils with high accuracy. Aroma classification with PLS method using 2 optimal MOS sensors yielded much higher accuracy than using all nine sensors. The accuracy of 2-group and 6-group classifications of essentials oils by ANN was 100% and 98.9%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
叶y发布了新的文献求助10
1秒前
DreamerKing完成签到,获得积分10
1秒前
小菜鸡发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助50
2秒前
Tao完成签到 ,获得积分10
2秒前
3秒前
3秒前
阳光易真发布了新的文献求助10
3秒前
4秒前
卢yi完成签到,获得积分20
4秒前
4秒前
宏哥发布了新的文献求助10
4秒前
雨洋完成签到,获得积分10
4秒前
天天快乐应助闫佳美采纳,获得10
4秒前
4秒前
Tina发布了新的文献求助150
5秒前
郦稀完成签到 ,获得积分10
5秒前
英俊的铭应助CC采纳,获得10
6秒前
VV发布了新的文献求助10
7秒前
7秒前
面包小狗发布了新的文献求助10
7秒前
8秒前
坚强的赛凤完成签到,获得积分10
9秒前
9秒前
ZLQ发布了新的文献求助10
10秒前
中级中级发布了新的文献求助10
10秒前
搜集达人应助Regina采纳,获得30
10秒前
两天xx完成签到,获得积分10
10秒前
快乐小狗完成签到,获得积分10
10秒前
默默发布了新的文献求助10
10秒前
风野完成签到,获得积分10
12秒前
Kv完成签到,获得积分10
13秒前
lemon发布了新的文献求助10
13秒前
犹豫灵凡完成签到,获得积分20
13秒前
感动薯片完成签到 ,获得积分20
13秒前
zhang发布了新的文献求助10
14秒前
charint完成签到,获得积分10
14秒前
深情安青应助中级中级采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
ESDU TM 218 An example of air data pressure correction with a dependency on engine power settings 400
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5036207
求助须知:如何正确求助?哪些是违规求助? 4269062
关于积分的说明 13309178
捐赠科研通 4079938
什么是DOI,文献DOI怎么找? 2231836
邀请新用户注册赠送积分活动 1239924
关于科研通互助平台的介绍 1165935