Enhanced Hybrid Model to Predict the Surface Roughness of Honed Cylinder Bore

圆柱 人工神经网络 珩磨 可解释性 表面光洁度 表面粗糙度 计算机科学 过程(计算) 人工智能 机器学习 算法 机械工程 工程类 材料科学 操作系统 复合材料
作者
Burhan Afzal,Xueping Zhang,Anil K. Srivastava
出处
期刊:Journal of tribology [ASM International]
卷期号:144 (1) 被引量:4
标识
DOI:10.1115/1.4052280
摘要

Abstract Cylinder bore honing is a finishing process that generates a crosshatch pattern with alternate valleys and plateaus responsible for enhancing lubrication and preventing gas and oil leakage in the engine cylinder bore. The required functional surface in the cylinder bore is generated by a sequential honing process and is characterized by Rk roughness parameters (Rk, Rvk, Rpk, Mr1, Mr2). Predicting the desired surface roughness relies primarily on two techniques: (i) analytical models (AM) and (ii) machine learning (ML) models. Both of these techniques offer certain advantages and limitations. AM's are interpretable as they indicate distinct mapping relation between input variables and honed surface texture. However, AM's are usually based on simplified assumptions to ensure the traceability of multiple variables. Consequently, their prediction accuracy is adversely impacted when these assumptions are not satisfied. However, ML models accurately predict the surface texture but their prediction mechanism is challenging to interpret. Furthermore, the ML models' performance relies heavily on the representativeness of data employed in developing them. Thus, either prediction accuracy or model interpretability suffers when AM and ML models are implemented independently. This study proposes a hybrid model framework to incorporate the benefits of AM and ML simultaneously. In the hybrid model, an artificial neural network (ANN) compensates the AM by correcting its error. This retains the physical understanding built into the model while simultaneously enhancing the prediction accuracy. The proposed approach resulted in a hybrid model that significantly improved the prediction accuracy of the AM and additionally provided superior performance compared to independent ANN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Daisy发布了新的文献求助10
刚刚
1秒前
水何澹澹完成签到,获得积分0
1秒前
来日方长发布了新的文献求助10
1秒前
1秒前
wind_555发布了新的文献求助10
1秒前
小景007完成签到,获得积分10
2秒前
2秒前
2秒前
nnnd77发布了新的文献求助10
3秒前
4秒前
4秒前
李健应助哈哈哈哈采纳,获得10
4秒前
无情的菲鹰完成签到,获得积分10
5秒前
pp完成签到,获得积分10
5秒前
科研助手6应助Bloom采纳,获得10
5秒前
无限的胜完成签到,获得积分10
6秒前
7秒前
哈尼发布了新的文献求助10
8秒前
9秒前
立婉陶应助酒贰采纳,获得10
9秒前
bxb完成签到,获得积分10
9秒前
咿呀发布了新的文献求助10
9秒前
Ther完成签到,获得积分10
10秒前
无敌蓝金刚完成签到,获得积分10
11秒前
11秒前
11秒前
tomato完成签到,获得积分10
12秒前
万能图书馆应助Nicoleliz采纳,获得10
12秒前
seonsungbong发布了新的文献求助10
12秒前
学术小白发布了新的文献求助10
12秒前
12秒前
潘宋完成签到,获得积分10
12秒前
鲍建芳发布了新的文献求助10
14秒前
852应助samvega采纳,获得10
15秒前
15秒前
darling完成签到,获得积分10
15秒前
15秒前
ihcwo发布了新的文献求助10
15秒前
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4004904
求助须知:如何正确求助?哪些是违规求助? 3544708
关于积分的说明 11291323
捐赠科研通 3281199
什么是DOI,文献DOI怎么找? 1809611
邀请新用户注册赠送积分活动 885342
科研通“疑难数据库(出版商)”最低求助积分说明 810867