Manufacturing Anti-CD19 CAR-Tscm Cells for Immunotherapy Using Innovative Microbubble-Based Technologies for Precision Cell Processing

CD19 体内 细胞疗法 嵌合抗原受体 细胞毒性T细胞 免疫疗法 CD8型 单元格排序 癌症研究 微气泡 过继性细胞移植 化学 免疫学 抗原 体外 医学 细胞 流式细胞术 生物 免疫系统 生物化学 生物技术 超声波 放射科
作者
Chuntang Fu,Guixin Shi,Yu‐Tsueng Liu
出处
期刊:Blood [American Society of Hematology]
卷期号:138 (Supplement 1): 3889-3889 被引量:2
标识
DOI:10.1182/blood-2021-144684
摘要

Abstract INTRODUCTION Chimeric antigen receptor (CAR) T cell therapy provides a potential cure for patients who don't respond to standard treatments. One of the major challenges for current mainstream CAR-T therapy is lack of in vivo persistence of transferred cells. Intriguingly, more differentiated effector T cells that acquire enhanced in vitro anti-tumor properties were found to be paradoxically less effective for in vivo tumor treatment. It has become clear that the persistence of adoptive transferred T cells is crucial for in vivo activities. A significant linear correlation was found between the differentiation status of infused T cells and the potency of tumor regression, in the order of Tscm > Tcm >Tem. While promising, CAR-Tscm cell therapy demands technical innovation for precision cell processing and production. Here, we show CAR-Tscm cells generated by microbubble-based technologies for precision T cell sorting and activation and viral transduction are more robust than those generated by the conventional method in in vitro assays and in vivo animal study using the NSG mouse model. METHODS Naïve T cells were isolated by sequential sorting with 3 targeted lipid shell microbubbles (conjugated with anti-CD8, anti-CD45RA, and anti-CD62L). Briefly, CD8+ T cells were floated by anti-CD8 conjugated microbubbles and separated from nontargeted cells in PBMC. The floated CD8+ cells returned to solution after the microbubbles had undergone dissolution by increasing ambient pressure. These cells were subsequently floated by anti-CD45RA and anti-CD62L microbubbles sequentially, as described earlier. To generate CD19-CAR-modified Tscm-enriched cells, isolated naïve T cells were activated by anti-CD3/CD28 conjugated microbubbles and transduced by CD19-CAR retrovirus via Retronectin conjugated microbubbles. Transduced naïve T cells were cultured in media with IL-7, IL-21, and TWS119. Control CD19-CAR T cells were produced from same donors' PBMCs using standard culture conditions (soluble IL-2 and anti-CD3/CD28 coated culture flasks). Raji cells were co-cultured with effector cells (Tscm-enriched and standard CD19 CAR T cells) at a gradient ET ratio for in vitro cytotoxicity assay. Tscm-enriched and standard CD19-CAR T cells were injected into Raji-luc-bearing NSG mice. Tumor burden was measured by the XenogenIVIS system. RESULTS Naïve CD8+ T lymphocytes were enriched by sequential isolation of CD8+, CD62L+, and CD45RA+ cells from healthy donor PBMCs using respective antibody conjugated microbubbles. The CD8, CD62L, and CD45RA triple positive population was enriched from initial 10.08%± 2.4% to 71.84%±1.9% (n=4). We discovered that Retronectin conjugated microbubbles are advantageous to replace spinoculation technique to simplify viral transduction procedures. The average transduction efficiency was 27.71%± 8.7% using unconcentrated retroviral vectors. The Tscm-like cells were significantly enriched after two-week culture, compared to the standard method (37.78± 14.5% vs. 4.38± 0.7%). Tscm-enriched CD19-CAR T cells exhibited a stronger in vitro cytotoxicity towards Raji cells in comparison with standard CD19-CAR T cells (Figure 1). Consistently, in the NSG mice engrafted with Raji-Luc cancer cells, the CD19-CAR-modified Tscm-enriched cells showed longer-lasting antitumor responses than the CD19-CAR-T cells generated by the standard manufacturing process (Figure 2). CONCLUSION We have developed a bead-free, multi-positive selection system for CAR-Tscm production, and demonstrated that these Tscm cells effectively cause tumor regression and prolong diseased animal lifespan. A closed, automated, microbubble-based CAR-T cell manufacturing system, combining T cell isolation, activation, and transduction will be developed to improve performance and reduce costs. Figure 1 Figure 1. Disclosures Fu: Diagnologix LLC: Current Employment. Shi: Diagnologix LLC: Current Employment. Liu: Diagnologix LLC: Current Employment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小侯关注了科研通微信公众号
刚刚
helpmepaper完成签到,获得积分10
2秒前
wanci应助Cindy采纳,获得10
6秒前
8秒前
9秒前
斯文败类应助农大彭于晏采纳,获得10
11秒前
bobo发布了新的文献求助10
12秒前
柯一一应助胖楹子采纳,获得10
12秒前
12秒前
古德曼发布了新的文献求助10
15秒前
迅速醉冬发布了新的文献求助10
16秒前
17秒前
17秒前
19秒前
20秒前
PKQ完成签到,获得积分10
21秒前
Cindy发布了新的文献求助10
23秒前
WJQ发布了新的文献求助10
23秒前
24秒前
neko发布了新的文献求助10
25秒前
25秒前
小小酥发布了新的文献求助10
25秒前
28秒前
WJQ完成签到,获得积分10
29秒前
上官若男应助neko采纳,获得10
30秒前
汪少侠发布了新的文献求助10
32秒前
ccczzzyyy完成签到,获得积分10
32秒前
汪进辉_Will完成签到,获得积分10
35秒前
36秒前
37秒前
我是老大应助石语芙采纳,获得10
37秒前
Hannibal发布了新的文献求助10
39秒前
husi发布了新的文献求助10
40秒前
Akim应助蓬蒿人采纳,获得10
43秒前
嘟嘟噜给嘟嘟噜的求助进行了留言
43秒前
44秒前
45秒前
滴答发布了新的文献求助10
46秒前
xiaoyang1986完成签到,获得积分10
47秒前
空蝉完成签到,获得积分10
47秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2471883
求助须知:如何正确求助?哪些是违规求助? 2138228
关于积分的说明 5449104
捐赠科研通 1862116
什么是DOI,文献DOI怎么找? 926089
版权声明 562747
科研通“疑难数据库(出版商)”最低求助积分说明 495326