稀疏逼近
核(代数)
计算机科学
非线性系统
稀疏矩阵
故障检测与隔离
核方法
代表(政治)
算法
多模光纤
过程(计算)
人工智能
模式识别(心理学)
数学
支持向量机
物理
组合数学
操作系统
政治
电信
量子力学
高斯分布
执行机构
光纤
法学
政治学
作者
Yang Wang,Ying Zheng,Zhaojing Wang,Weidong Yang
标识
DOI:10.1109/tii.2021.3104111
摘要
Real-time nonlinear multimode process monitoring of actual industrial systems has attracted increasing attention recently. In this article, the time-weighed kernel sparse representation (TWKSR) method is proposed to partition the mode of the training dataset by introducing the time-series-dependent characteristics into the kernel sparse representation algorithm. The alternating direction method of multipliers is utilized to solve the optimization problem of the proposed TWKSR method. Then, the representative samples from each identified mode are selected to update the dictionary matrix. Based on the updated dictionary matrix, the sparse coefficient is used for online mode identification, and the reconstruction error is utilized for fault detection. Finally, a numerical simulation case and the wastewater treatment process example verify the effectiveness of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI