清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

High Temperature Thermal Shock Synthesis of Catalyst-Decorated Nanostructures for Energy Storage

材料科学 纳米颗粒 化学工程 纳米技术 成核 粒径 粒子(生态学) 碳纳米纤维 焦耳加热 复合材料 碳纳米管 化学 有机化学 海洋学 地质学 工程类
作者
Steven D. Lacey,Yonggang Yao,Liangbing Hu,Liangbing Hu
出处
期刊:Meeting abstracts 卷期号:MA2017-02 (6): 587-587
标识
DOI:10.1149/ma2017-02/6/587
摘要

An efficient and ultrafast method to synthesize well-dispersed functional nanoparticles with controlled size and distribution remains largely unanswered. Conventional synthesis methods (wet chemistry, spray pyrolysis, among others) tend to be less controllable, leading to nanoparticle aggregation as well as a wide particle size distribution. Therefore, a short synthesis duration is critical to control nanoparticle size and minimize aggregation. Here we report a rapid and universal high temperature thermal shock method to form and uniformly disperse metallic nanoparticles on a conductive carbon support, such as carbon nanofibers (CNF). First, the desired metal salt precursor is homogeneously mixed into an aqueous solution and loaded onto the conductive carbon support. After drying, the precursor-loaded CNF film is attached to electrical leads inside an argon-filled glovebox to facilitate the electrically triggered Joule heating procedure. An applied electrical pulse from an external power source induces the thermal shock process by heating the precursor-loaded CNF to ~2000 K for mere milliseconds at ultrafast heating/cooling rates (~10 5 K/s). Due to the short high temperature exposure and rapid cooling rate, nearly any precursor metal salt can decompose and nucleate into uniformly distributed metallic nanoparticles with ultrafine particle sizes without damaging the conductive support. Note that kinetic control can also be achieved by tuning the synthesis parameters (pulse duration, heating temperature, heating/cooling rates). Specifically, as the pulse duration increases to seconds, the temporal limitations for diffusion and migration broaden, allowing nanoparticles with larger diameters to form with a wider particle size distribution. In the field of energy storage, nanoparticle-decorated conductive supports are ideal battery electrodes. To demonstrate the proposed manufacturing method, lithium-oxygen (Li-O 2 ) batteries were successfully assembled and tested using the nanocatalyst-decorated CNF films. Bifunctional ruthenium nanoparticles were synthesized by the rapid thermal shock method to increase the electrocatalytic activity of the CNF-based Li-O 2 cathodes and improve oxygen reaction kinetics. The results indicate the potential of this rapid manufacturing method to synthesize an array of non-agglomerated nanoparticle-decorated supports for energy storage devices and beyond.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛋卷完成签到 ,获得积分10
8秒前
木之尹完成签到 ,获得积分10
12秒前
shezhinicheng完成签到 ,获得积分10
14秒前
15秒前
蔡勇强完成签到 ,获得积分10
17秒前
kxdxng完成签到 ,获得积分10
23秒前
丁娜完成签到 ,获得积分10
24秒前
29秒前
孝顺的觅风完成签到 ,获得积分10
30秒前
yujie完成签到 ,获得积分10
31秒前
HCCha完成签到,获得积分10
31秒前
t铁核桃1985完成签到 ,获得积分10
35秒前
王波完成签到 ,获得积分10
44秒前
44秒前
feitian201861完成签到,获得积分10
50秒前
WSY完成签到 ,获得积分10
59秒前
1分钟前
Spring完成签到,获得积分10
1分钟前
小猴子完成签到 ,获得积分10
1分钟前
5476完成签到,获得积分10
1分钟前
小yi又困啦完成签到 ,获得积分10
1分钟前
注水萝卜完成签到 ,获得积分10
1分钟前
1分钟前
xt完成签到,获得积分10
1分钟前
1分钟前
眼睛大冬日完成签到 ,获得积分10
1分钟前
齐静春完成签到 ,获得积分10
1分钟前
健康的大门完成签到,获得积分10
1分钟前
慎之完成签到 ,获得积分10
1分钟前
1分钟前
飘逸的小鸽子完成签到 ,获得积分10
2分钟前
V_I_G完成签到 ,获得积分10
2分钟前
hilton完成签到 ,获得积分10
2分钟前
霍凡白完成签到,获得积分10
2分钟前
SDM完成签到 ,获得积分10
2分钟前
2分钟前
xianyaoz完成签到 ,获得积分0
2分钟前
2分钟前
ran完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784835
求助须知:如何正确求助?哪些是违规求助? 3330070
关于积分的说明 10244297
捐赠科研通 3045435
什么是DOI,文献DOI怎么找? 1671691
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759541