正交晶系
法拉第效率
阳极
材料科学
锂(药物)
离子
电化学
晶体结构
扩散
Crystal(编程语言)
结晶学
分析化学(期刊)
化学工程
化学
物理化学
电极
热力学
物理
有机化学
工程类
计算机科学
医学
程序设计语言
内分泌学
作者
Xiaoming Lou,Chunfu Lin,Qiang Luo,Jinbo Zhao,Bin Wang,Jianbao Li,Qian Shao,Xingkui Guo,Ning Wang,Zhanhu Guo
标识
DOI:10.1002/celc.201700816
摘要
Abstract The recently explored FeNb 11 O 29 is an advanced anode material for lithium‐ion batteries, owing to its high specific capacity and safety. However, it suffers from poor rate capability. To tackle this issue, a crystal structure modification is employed. Defective FeNb 11 O 29 (FeNb 11 O 27.9 ) is fabricated by using a one‐step solid‐state reaction method in N 2 . FeNb 11 O 27.9 has the same orthorhombic shear ReO 3 crystal structure ( Amma space group) as FeNb 11 O 29 , but a larger unit‐cell volume and 3.8 % O 2− vacancies (vs. all O 2− ions), which improve the Li + ‐ion diffusion coefficient by a factor of 88.3 %. The contained Nb 4+ ions with free 4 d electrons significantly increase the electronic conductivity by three orders of magnitude. Consequently, FeNb 11 O 27.9 shows improved pseudocapacitive behavior and electrochemical properties. In comparison with FeNb 11 O 29 , FeNb 11 O 27.9 exhibits a higher reversible capacity of 270 mAh g −1 with a higher first‐cycle coulombic efficiency of 90.6 % at 0.1 C. At 10 C, FeNb 11 O 27.9 still retains a high capacity of 145 mAh g −1 with low capacity loss of 6.9 % after 200 cycles, in contrast to the values of 99 mAh g −1 and 11.1 % obtained for FeNb 11 O 29 .
科研通智能强力驱动
Strongly Powered by AbleSci AI