HAMLET: Interpretable Human And Machine co-LEarning Technique

可解释性 人工智能 机器学习 计算机科学 分类器(UML) 人工神经网络 深度学习 HAMLET(蛋白质复合物) 深层神经网络 模式识别(心理学) 遗传学 生物
作者
Olivier Deiss,Siddharth Biswal,Jing Jin,Haoqi Sun,M. Brandon Westover,Jimeng Sun
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.1803.09702
摘要

Efficient label acquisition processes are key to obtaining robust classifiers. However, data labeling is often challenging and subject to high levels of label noise. This can arise even when classification targets are well defined, if instances to be labeled are more difficult than the prototypes used to define the class, leading to disagreements among the expert community. Here, we enable efficient training of deep neural networks. From low-confidence labels, we iteratively improve their quality by simultaneous learning of machines and experts. We call it Human And Machine co-LEarning Technique (HAMLET). Throughout the process, experts become more consistent, while the algorithm provides them with explainable feedback for confirmation. HAMLET uses a neural embedding function and a memory module filled with diverse reference embeddings from different classes. Its output includes classification labels and highly relevant reference embeddings as explanation. We took the study of brain monitoring at intensive care unit (ICU) as an application of HAMLET on continuous electroencephalography (cEEG) data. Although cEEG monitoring yields large volumes of data, labeling costs and difficulty make it hard to build a classifier. Additionally, while experts agree on the labels of clear-cut examples of cEEG patterns, labeling many real-world cEEG data can be extremely challenging. Thus, a large minority of sequences might be mislabeled. HAMLET has shown significant performance gain against deep learning and other baselines, increasing accuracy from 7.03% to 68.75% on challenging inputs. Besides improved performance, clinical experts confirmed the interpretability of those reference embeddings in helping explaining the classification results by HAMLET.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助Robin采纳,获得10
6秒前
今后应助devilito采纳,获得30
7秒前
8秒前
嘎嘎嘎嘎完成签到,获得积分10
8秒前
9秒前
cff完成签到,获得积分10
9秒前
13秒前
14秒前
16秒前
完美世界应助Robin采纳,获得10
17秒前
18秒前
XM发布了新的文献求助10
19秒前
彪壮的小玉完成签到,获得积分10
28秒前
科研通AI5应助dhua采纳,获得30
31秒前
甜甜圈完成签到,获得积分20
32秒前
bc应助ddh采纳,获得30
35秒前
36秒前
39秒前
kai发布了新的文献求助10
41秒前
devilito发布了新的文献求助30
43秒前
43秒前
364zdk完成签到 ,获得积分10
43秒前
Tink完成签到,获得积分10
45秒前
46秒前
新晋学术小生完成签到 ,获得积分10
46秒前
47秒前
48秒前
刘搞笑发布了新的文献求助10
48秒前
善学以致用应助oia采纳,获得10
49秒前
caimeng发布了新的文献求助10
50秒前
50秒前
小苗发布了新的文献求助10
51秒前
领导范儿应助纯真的笑容采纳,获得10
52秒前
jtj完成签到 ,获得积分10
55秒前
56秒前
小白发布了新的文献求助30
56秒前
59秒前
1分钟前
领导范儿应助不安梦桃采纳,获得10
1分钟前
隐形曼青应助Mr.Bad采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217907
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758415