Propagation of kinetic uncertainties through a canonical topology of the TLR4 signaling network in different regions of biochemical reaction space

动能 系统生物学 拓扑(电路) 空格(标点符号) 计算生物学 计算机科学 生物 生物系统 化学 统计物理学 物理 数学 经典力学 组合数学 操作系统
作者
Jayson Gutiérrez,Georges St. Laurent,Silvio Urcuqui-Inchima
出处
期刊:Theoretical Biology and Medical Modelling [Springer Science+Business Media]
卷期号:7 (1) 被引量:7
标识
DOI:10.1186/1742-4682-7-7
摘要

Signal transduction networks represent the information processing systems that dictate which dynamical regimes of biochemical activity can be accessible to a cell under certain circumstances. One of the major concerns in molecular systems biology is centered on the elucidation of the robustness properties and information processing capabilities of signal transduction networks. Achieving this goal requires the establishment of causal relations between the design principle of biochemical reaction systems and their emergent dynamical behaviors.In this study, efforts were focused in the construction of a relatively well informed, deterministic, non-linear dynamic model, accounting for reaction mechanisms grounded on standard mass action and Hill saturation kinetics, of the canonical reaction topology underlying Toll-like receptor 4 (TLR4)-mediated signaling events. This signaling mechanism has been shown to be deployed in macrophages during a relatively short time window in response to lipopolysaccharide (LPS) stimulation, which leads to a rapidly mounted innate immune response. An extensive computational exploration of the biochemical reaction space inhabited by this signal transduction network was performed via local and global perturbation strategies. Importantly, a broad spectrum of biologically plausible dynamical regimes accessible to the network in widely scattered regions of parameter space was reconstructed computationally. Additionally, experimentally reported transcriptional readouts of target pro-inflammatory genes, which are actively modulated by the network in response to LPS stimulation, were also simulated. This was done with the main goal of carrying out an unbiased statistical assessment of the intrinsic robustness properties of this canonical reaction topology.Our simulation results provide convincing numerical evidence supporting the idea that a canonical reaction mechanism of the TLR4 signaling network is capable of performing information processing in a robust manner, a functional property that is independent of the signaling task required to be executed. Nevertheless, it was found that the robust performance of the network is not solely determined by its design principle (topology), but this may be heavily dependent on the network's current position in biochemical reaction space. Ultimately, our results enabled us the identification of key rate limiting steps which most effectively control the performance of the system under diverse dynamical regimes.Overall, our in silico study suggests that biologically relevant and non-intuitive aspects on the general behavior of a complex biomolecular network can be elucidated only when taking into account a wide spectrum of dynamical regimes attainable by the system. Most importantly, this strategy provides the means for a suitable assessment of the inherent variational constraints imposed by the structure of the system when systematically probing its parameter space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
但愿海波平完成签到,获得积分10
2秒前
小苗丫完成签到 ,获得积分10
3秒前
nihaoxjm发布了新的文献求助10
3秒前
5秒前
5秒前
这个论文非写不可完成签到,获得积分10
7秒前
骑驴找马完成签到,获得积分10
9秒前
10秒前
11秒前
14秒前
16秒前
16秒前
科研通AI5应助吱吱采纳,获得10
16秒前
烟花发布了新的文献求助10
17秒前
Alden发布了新的文献求助10
17秒前
zz发布了新的文献求助10
18秒前
小二郎应助LL采纳,获得10
20秒前
QQ发布了新的文献求助10
21秒前
冰魂应助曾经的便当采纳,获得10
22秒前
可爱的函函应助zz采纳,获得10
22秒前
25秒前
皮皮朱完成签到,获得积分10
25秒前
28秒前
科研通AI5应助李旺旺采纳,获得10
30秒前
痴情的靖柔完成签到 ,获得积分10
32秒前
个木完成签到,获得积分10
32秒前
慕青应助lvlv@nmsl采纳,获得10
32秒前
32秒前
34秒前
sui完成签到,获得积分10
34秒前
36秒前
grzzz发布了新的文献求助10
37秒前
翁雁丝完成签到 ,获得积分0
37秒前
微笑的天抒完成签到,获得积分10
40秒前
LL发布了新的文献求助10
42秒前
冰魂应助发嗲的康采纳,获得20
42秒前
46秒前
科研通AI5应助科研通管家采纳,获得10
46秒前
彭于晏应助科研通管家采纳,获得10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782033
求助须知:如何正确求助?哪些是违规求助? 3327493
关于积分的说明 10231874
捐赠科研通 3042467
什么是DOI,文献DOI怎么找? 1669975
邀请新用户注册赠送积分活动 799521
科研通“疑难数据库(出版商)”最低求助积分说明 758825