Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity

血流动力学 神经科学 运动前神经元活动 视皮层 功能磁共振成像 预测(人工智能) 大脑活动与冥想 感觉系统 心理学 医学 脑电图 心脏病学 计算机科学 人工智能
作者
Yevgeniy B. Sirotin,Aniruddha Das
出处
期刊:Nature [Nature Portfolio]
卷期号:457 (7228): 475-479 被引量:442
标识
DOI:10.1038/nature07664
摘要

Haemodynamic signals underlying functional brain imaging (for example, functional magnetic resonance imaging (fMRI)) are assumed to reflect metabolic demand generated by local neuronal activity, with equal increases in haemodynamic signal implying equal increases in the underlying neuronal activity. Few studies have compared neuronal and haemodynamic signals in alert animals to test for this assumed correspondence. Here we present evidence that brings this assumption into question. Using a dual-wavelength optical imaging technique that independently measures cerebral blood volume and oxygenation, continuously, in alert behaving monkeys, we find two distinct components to the haemodynamic signal in the alert animals' primary visual cortex (V1). One component is reliably predictable from neuronal responses generated by visual input. The other component-of almost comparable strength-is a hitherto unknown signal that entrains to task structure independently of visual input or of standard neural predictors of haemodynamics. This latter component shows predictive timing, with increases of cerebral blood volume in anticipation of trial onsets even in darkness. This trial-locked haemodynamic signal could be due to an accompanying V1 arterial pumping mechanism, closely matched in time, with peaks of arterial dilation entrained to predicted trial onsets. These findings (tested in two animals) challenge the current understanding of the link between brain haemodynamics and local neuronal activity. They also suggest the existence of a novel preparatory mechanism in the brain that brings additional arterial blood to cortex in anticipation of expected tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣慰晓兰发布了新的文献求助30
刚刚
SCI关闭了SCI文献求助
刚刚
杪123完成签到,获得积分10
1秒前
默默忆山关注了科研通微信公众号
2秒前
2秒前
海心完成签到 ,获得积分10
3秒前
大马哈鱼完成签到,获得积分10
5秒前
满意的柏柳完成签到,获得积分10
5秒前
peng完成签到,获得积分10
6秒前
8秒前
9秒前
XIA发布了新的文献求助10
11秒前
13秒前
17秒前
Xu完成签到 ,获得积分10
19秒前
20秒前
21秒前
111完成签到 ,获得积分10
22秒前
刘搞笑发布了新的文献求助10
24秒前
25秒前
林溪完成签到,获得积分10
27秒前
LJM完成签到,获得积分10
29秒前
高圆圆完成签到,获得积分10
29秒前
HEIKU应助纪鹏飞采纳,获得10
35秒前
Xu关注了科研通微信公众号
37秒前
38秒前
东邪西毒加任我行完成签到,获得积分10
40秒前
bc应助rrrrroxie采纳,获得40
41秒前
Sunshine完成签到,获得积分10
42秒前
领导范儿应助科研通管家采纳,获得10
42秒前
42秒前
42秒前
CipherSage应助刘搞笑采纳,获得10
43秒前
44秒前
Aries完成签到 ,获得积分10
48秒前
犹豫紫丝发布了新的文献求助10
53秒前
53秒前
54秒前
54秒前
tier3完成签到,获得积分10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217992
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758415