Research progress of computer aided diagnosis system for pulmonary nodules in CT images

医学 计算机辅助诊断 计算机科学 放射科 医学物理学
作者
Yu Wang,Bo Wu,Nan Zhang,Jiabao Liu,Fei Ren,Lei Zhao
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:28 (1): 1-16 被引量:9
标识
DOI:10.3233/xst-190581
摘要

BACKGROUND AND OBJECTIVE:Since CAD (Computer Aided Diagnosis) system can make it easier and more efficient to interpret CT (Computer Tomography) images, it has gained much attention and developed rapidly in recent years. This article reviews recent CAD techniques for pulmonary nodule detection and diagnosis in CT Images. METHODS:CAD systems can be classified into computer-aided detection (CADe) and computer-aided diagnosis (CADx) systems. This review reports recent researches of both systems, including the database, technique, innovation and experimental results of each work. Multi-task CAD systems, which can handle segmentation, false positive reduction, malignancy prediction and other tasks at the same time. The commercial CAD systems are also briefly introduced. RESULTS:We have found that deep learning based CAD is the mainstream of current research. The reported sensitivity of deep learning based CADe systems ranged between 80.06% and 94.1% with an average 4.3 false-positive (FP) per scan when using LIDC-IDRI dataset, and between 94.4% and 97.9% with an average 4 FP/scan when using LUNA16 dataset, respectively. The overall accuracy of deep learning based CADx systems ranged between 86.84% and 92.3% with an average AUC of 0.956 reported when using LIDC-IDRI dataset. CONCLUSIONS:We summarized the current tendency and limitations as well as future challenges in this field. The development of CAD needs to meet the rigid clinical requirements, such as high accuracy, strong robustness, high efficiency, fine-grained analysis and classification, and to provide practical clinical functions. This review provides helpful information for both engineering researchers and radiologists to learn the latest development of CAD systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助shen采纳,获得10
4秒前
5秒前
6秒前
张远幸完成签到 ,获得积分10
6秒前
sn完成签到,获得积分20
7秒前
8秒前
carl发布了新的文献求助10
12秒前
wyx发布了新的文献求助10
13秒前
16秒前
Lucas应助carl采纳,获得10
18秒前
2463841186发布了新的文献求助10
22秒前
CYY发布了新的文献求助10
23秒前
liu完成签到,获得积分10
24秒前
桐桐应助哈哈哈开开心心采纳,获得10
33秒前
34秒前
ww发布了新的文献求助10
39秒前
02完成签到,获得积分10
43秒前
LIGANG1111发布了新的文献求助10
46秒前
48秒前
Tangyartie完成签到 ,获得积分10
49秒前
顺心牛排发布了新的文献求助10
51秒前
Steven发布了新的文献求助30
52秒前
不知道是谁完成签到,获得积分10
54秒前
junio完成签到 ,获得积分10
55秒前
zho发布了新的文献求助10
1分钟前
情怀应助7lanxiong采纳,获得10
1分钟前
科研通AI2S应助顺心牛排采纳,获得10
1分钟前
慕青应助爬不起来采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
小二郎应助sk夏冰采纳,获得10
1分钟前
ljb完成签到,获得积分10
1分钟前
1分钟前
1分钟前
unless完成签到,获得积分10
1分钟前
1分钟前
1分钟前
cedar发布了新的文献求助10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778623
求助须知:如何正确求助?哪些是违规求助? 3324223
关于积分的说明 10217490
捐赠科研通 3039405
什么是DOI,文献DOI怎么找? 1668073
邀请新用户注册赠送积分活动 798494
科研通“疑难数据库(出版商)”最低求助积分说明 758385