Controlling the Shapes of Nanoparticles by Dopant-Induced Enhancement of Chemisorption and Catalytic Activity: Application to Fe-Based Ammonia Synthesis

掺杂剂 化学吸附 催化作用 氨生产 纳米颗粒 材料科学 化学工程 纳米技术 兴奋剂 化学物理 无机化学 化学 有机化学 光电子学 工程类
作者
Qi An,Molly Mcdonald,Alessandro Fortunelli,William A. Goddard
出处
期刊:ACS Nano [American Chemical Society]
卷期号:15 (1): 1675-1684 被引量:15
标识
DOI:10.1021/acsnano.0c09346
摘要

We showed recently that the catalytic efficiency of ammonia synthesis on Fe-based nanoparticles (NP) for Haber–Bosch (HB) reduction of N2 to ammonia depends very dramatically on the crystal surface exposed and on the doping. In turn, the stability of each surface depends on the stable intermediates present during the catalysis. Thus, under reaction conditions, the shape of the NP is expected to evolve to optimize surface energies. In this paper, we propose to manipulate the shape of the nanoparticles through doping combined with chemisorption and catalysis. To do this, we consider the relationships between the catalyst composition (adding dopant elements) and on how the distribution of the dopant atoms on the bulk and facet sites affects the shape of the particles and therefore the number of active sites on the catalyst surfaces. We use our hierarchical, high-throughput catalyst screening (HHTCS) approach but extend the scope of HHTCS to select dopants that can increase the catalytically active surface orientations, such as Fe-bcc(111), at the expense of catalytically inactive facets, such as Fe-bcc(100). Then, for the most promising dopants, we predict the resulting shape and activity of doped Fe-based nanoparticles under reaction conditions. We examined 34 possible dopants across the periodic table and found 16 dopants that can potentially increase the fraction of active Fe-bcc(111) vs inactive Fe-bcc(100) facets. Combining this reshaping criterion with our HHTCS estimate of the resulting catalytic performance, we show that Si and Ni are the most promising elements for improving the rates of catalysis by optimizing the shape to decrease reaction barriers. Then, using Si dopant as a working example, we build a steady-state dynamical Wulff construction of Si-doped Fe bcc nanoparticles. We use nanoparticles with a diameter of ∼10 nm, typical of industrial catalysts. We predict that doping Si into such Fe nanoparticles at the optimal atomic content of ∼0.3% leads to rate enhancements by a factor of 56 per nanoparticle under target HB conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助自然的清涟采纳,获得50
1秒前
开放凡波发布了新的文献求助10
2秒前
2秒前
优秀小笼包完成签到,获得积分10
3秒前
Luke完成签到,获得积分10
3秒前
爆米花应助肖恩采纳,获得10
4秒前
科研通AI2S应助陈文清采纳,获得10
4秒前
羔羊完成签到,获得积分10
4秒前
Tamarin应助哈密瓜辅酶A采纳,获得10
5秒前
11发布了新的文献求助10
5秒前
曾经谷云完成签到,获得积分10
6秒前
凊诏完成签到,获得积分10
6秒前
阳光的若南完成签到,获得积分10
7秒前
赫连涵柏完成签到,获得积分0
10秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
核桃应助科研通管家采纳,获得10
12秒前
aldehyde应助科研通管家采纳,获得10
12秒前
aldehyde应助科研通管家采纳,获得10
12秒前
12秒前
aldehyde应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得30
13秒前
orixero应助科研通管家采纳,获得50
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
realssr应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得30
13秒前
淡定诗柳完成签到,获得积分10
14秒前
干净寄文发布了新的文献求助10
17秒前
肖恩发布了新的文献求助10
17秒前
21秒前
22秒前
CMUSK完成签到,获得积分10
25秒前
26秒前
26秒前
26秒前
深夜诗人完成签到 ,获得积分10
27秒前
干净寄文完成签到,获得积分10
30秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800701
求助须知:如何正确求助?哪些是违规求助? 3346044
关于积分的说明 10328318
捐赠科研通 3062548
什么是DOI,文献DOI怎么找? 1681011
邀请新用户注册赠送积分活动 807353
科研通“疑难数据库(出版商)”最低求助积分说明 763642