已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Alzheimer Disease: An Update on Pathobiology and Treatment Strategies

疾病 生物 阿尔茨海默病 神经科学 生物信息学 计算生物学 医学 内科学
作者
Justin M. Long,David M. Holtzman
出处
期刊:Cell [Elsevier]
卷期号:179 (2): 312-339 被引量:1609
标识
DOI:10.1016/j.cell.2019.09.001
摘要

Alzheimer disease (AD) is a heterogeneous disease with a complex pathobiology. The presence of extracellular β-amyloid deposition as neuritic plaques and intracellular accumulation of hyperphosphorylated tau as neurofibrillary tangles remains the primary neuropathologic criteria for AD diagnosis. However, a number of recent fundamental discoveries highlight important pathological roles for other critical cellular and molecular processes. Despite this, no disease-modifying treatment currently exists, and numerous phase 3 clinical trials have failed to demonstrate benefits. Here, we review recent advances in our understanding of AD pathobiology and discuss current treatment strategies, highlighting recent clinical trials and opportunities for developing future disease-modifying therapies. Alzheimer disease (AD) is a heterogeneous disease with a complex pathobiology. The presence of extracellular β-amyloid deposition as neuritic plaques and intracellular accumulation of hyperphosphorylated tau as neurofibrillary tangles remains the primary neuropathologic criteria for AD diagnosis. However, a number of recent fundamental discoveries highlight important pathological roles for other critical cellular and molecular processes. Despite this, no disease-modifying treatment currently exists, and numerous phase 3 clinical trials have failed to demonstrate benefits. Here, we review recent advances in our understanding of AD pathobiology and discuss current treatment strategies, highlighting recent clinical trials and opportunities for developing future disease-modifying therapies. Dementia describes an intra-individual pattern of decline in memory and thinking impairing at least two domains of cognition (McKhann et al., 2011McKhann G.M. Knopman D.S. Chertkow H. Hyman B.T. Jack Jr., C.R. Kawas C.H. Klunk W.E. Koroshetz W.J. Manly J.J. Mayeux R. et al.The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease.Alzheimers Dement. 2011; 7: 263-269Google Scholar). Alzheimer disease (AD) is the most common cause of dementia. The majority of cases occur after age 65, constituting late-onset AD (LOAD), while cases occurring earlier than age 65 are considerably rarer, constituting less than 5% of all cases and are termed early-onset AD (EOAD) (Alzheimer’s Association, 2019Alzheimer’s Association2019 Alzheimer’s disease facts and figures.Alzheimers Dement. 2019; 15: 321-387Google Scholar). Approximately 1%–2% of AD is inherited in an autosomal dominant fashion (ADAD) and can present with very early age of onset and a more rapid rate of progression, and it is sometimes associated with other neurologic symptoms seen less frequently in sporadic AD (Bateman et al., 2012Bateman R.J. Xiong C. Benzinger T.L.S. Fagan A.M. Goate A. Fox N.C. Marcus D.S. Cairns N.J. Xie X. Blazey T.M. et al.Dominantly Inherited Alzheimer NetworkClinical and biomarker changes in dominantly inherited Alzheimer’s disease.N. Engl. J. Med. 2012; 367: 795-804Google Scholar). Clinical syndromes consistent with AD are defined by classical symptoms and cognitive profiles. However, AD as a distinct entity is now defined biologically by the presence of a specific neuropathological profile (Jack et al., 2018aJack Jr., C.R. Bennett D.A. Blennow K. Carrillo M.C. Dunn B. Haeberlein S.B. Holtzman D.M. Jagust W. Jessen F. Karlawish J. et al.ContributorsNIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease.Alzheimers Dement. 2018; 14: 535-562Google Scholar): extracellular deposition of β-amyloid (Aβ) in the form of diffuse and neuritic plaques and the presence of intraneuronal neurofibrillary tangles (NFTs) and neuropil threads within dystrophic neurites consisting of aggregated hyperphosphorylated tau protein (Duyckaerts et al., 2009Duyckaerts C. Delatour B. Potier M.-C. Classification and basic pathology of Alzheimer disease.Acta Neuropathol. 2009; 118: 5-36Google Scholar). Dementia due to AD is associated with the onset of significant and progressive disability throughout the disease course, with death an inevitable outcome generally occurring within 5–12 years of symptom onset (Vermunt et al., 2019Vermunt L. Sikkes S.A.M. van den Hout A. Handels R. Bos I. van der Flier W.M. Kern S. Ousset P.-J. Maruff P. Skoog I. et al.Duration of preclinical, prodromal, and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE genotype.Alzheimers Dement. 2019; 15: 888-898Google Scholar). The burden on caregivers and the public health sector is enormous (Alzheimer’s Association, 2019Alzheimer’s Association2019 Alzheimer’s disease facts and figures.Alzheimers Dement. 2019; 15: 321-387Google Scholar). There is a dire need for disease-modifying therapies that may prevent or slow the rate of disease progression, but unfortunately none are currently available. The history of pharmaceutical development for AD has been plagued by a seemingly endless parade of mid-to-late-stage clinical trial failures. Nonetheless, significant strides have been made in recent years in clarifying key aspects of the underlying pathobiology of AD. Though the therapeutic pipeline has faced struggles and some pharmaceutical companies have chosen to abandon their AD drug development divisions, novel therapeutic strategies are still being actively developed and tested. This Review discusses recent advances in our understanding of the pathobiology of AD and summarizes treatment strategies as well as the challenges and opportunities on the path to development of truly disease-modifying treatments. Symptomatic AD follows an insidious and progressive course. Typical amnestic cases are characterized by early impairment in learning and memory, followed by later impairments in complex attention, executive function, language, visuospatial function, praxis, gnosis, and behavior and/or social comportment (McKhann et al., 2011McKhann G.M. Knopman D.S. Chertkow H. Hyman B.T. Jack Jr., C.R. Kawas C.H. Klunk W.E. Koroshetz W.J. Manly J.J. Mayeux R. et al.The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease.Alzheimers Dement. 2011; 7: 263-269Google Scholar). Symptomatic AD may also present as atypical clinical syndromes in which there is early impairment in non-memory domains. Posterior cortical atrophy presents with early deficits in visuospatial function, praxis, and gnosis (Tang-Wai et al., 2004Tang-Wai D.F. Graff-Radford N.R. Boeve B.F. Dickson D.W. Parisi J.E. Crook R. Caselli R.J. Knopman D.S. Petersen R.C. Clinical, genetic, and neuropathologic characteristics of posterior cortical atrophy.Neurology. 2004; 63: 1168-1174Google Scholar). Logopenic variant of primary progressive aphasia is characterized by dysfluent language with prominent word-finding impairment and severe impairment in repetition (Gorno-Tempini et al., 2008Gorno-Tempini M.L. Brambati S.M. Ginex V. Ogar J. Dronkers N.F. Marcone A. Perani D. Garibotto V. Cappa S.F. Miller B.L. The logopenic/phonological variant of primary progressive aphasia.Neurology. 2008; 71: 1227-1234Google Scholar). The behavioral/dysexecutive variant of AD presents with early executive dysfunction or behavioral impairment (especially apathy, hyperorality, and perseveration) (Ossenkoppele et al., 2015Ossenkoppele R. Pijnenburg Y.A.L. Perry D.C. Cohn-Sheehy B.I. Scheltens N.M.E. Vogel J.W. Kramer J.H. van der Vlies A.E. La Joie R. Rosen H.J. et al.The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features.Brain. 2015; 138: 2732-2749Google Scholar). Clinical dementia severity can be graded by use of standardized instruments such as the Clinical Dementia Rating (CDR) (Burke et al., 1988Burke W.J. Miller J.P. Rubin E.H. Morris J.C. Coben L.A. Duchek J. Wittels I.G. Berg L. Reliability of the Washington University Clinical Dementia Rating.Arch. Neurol. 1988; 45: 31-32Google Scholar, Morris, 1997Morris J.C. Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type.Int. Psychogeriatr. 1997; 9: 173-176, discussion 177–178Google Scholar), which grades disease severity based on composite level of dysfunction in domains of memory, orientation, judgement and problem solving, involvement in community affairs, function in home and hobbies, and self-care. Antemortem AD neuropathologic diagnoses can now be made with reasonable validity using cerebrospinal fluid (CSF) or positron emission tomography (PET) imaging biomarkers as surrogate markers for cerebral Aβ and tau deposition (Brier et al., 2016Brier M.R. Day G.S. Snyder A.Z. Tanenbaum A.B. Ances B.M. N-methyl-D-aspartate receptor encephalitis mediates loss of intrinsic activity measured by functional MRI.J. Neurol. 2016; 263: 1083-1091Google Scholar, Fagan et al., 2006Fagan A.M. Mintun M.A. Mach R.H. Lee S.-Y. Dence C.S. Shah A.R. LaRossa G.N. Spinner M.L. Klunk W.E. Mathis C.A. et al.Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans.Ann. Neurol. 2006; 59: 512-519Google Scholar, Fagan et al., 2007Fagan A.M. Roe C.M. Xiong C. Mintun M.A. Morris J.C. Holtzman D.M. Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults.Arch. Neurol. 2007; 64: 343-349Google Scholar, Lowe et al., 2019Lowe V.J. Lundt E.S. Albertson S.M. Przybelski S.A. Senjem M.L. Parisi J.E. Kantarci K. Boeve B. Jones D.T. Knopman D. et al.Neuroimaging correlates with neuropathologic schemes in neurodegenerative disease.Alzheimers Dement. 2019; 15: 927-939Google Scholar, Morris et al., 2009Morris J.C. Roe C.M. Grant E.A. Head D. Storandt M. Goate A.M. Fagan A.M. Holtzman D.M. Mintun M.A. Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease.Arch. Neurol. 2009; 66: 1469-1475Google Scholar). Recent studies demonstrate the ability to detect CNS Aβ deposition via the use of plasma assessment of Aβ species (Nakamura et al., 2018Nakamura A. Kaneko N. Villemagne V.L. Kato T. Doecke J. Doré V. Fowler C. Li Q.-X. Martins R. Rowe C. et al.High performance plasma amyloid-β biomarkers for Alzheimer’s disease.Nature. 2018; 554: 249-254Google Scholar, Ovod et al., 2017Ovod V. Ramsey K.N. Mawuenyega K.G. Bollinger J.G. Hicks T. Schneider T. Sullivan M. Paumier K. Holtzman D.M. Morris J.C. et al.Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis.Alzheimers Dement. 2017; 13: 841-849Google Scholar, Palmqvist et al., 2019Palmqvist S. Janelidze S. Stomrud E. Zetterberg H. Karl J. Zink K. Bittner T. Mattsson N. Eichenlaub U. Blennow K. Hansson O. Performance of Fully Automated Plasma Assays as Screening Tests for Alzheimer Disease-Related β-Amyloid Status.JAMA Neurol. 2019; (Published online June 24, 2019)https://doi.org/10.1001/jamaneurol.2019.1632Google Scholar). Longitudinal studies of cognitive function and CSF and neuroimaging biomarker changes in ADAD and LOAD have identified a significant preclinical phase of disease preceding onset of clinical symptoms by at least 10–20 years (Vermunt et al., 2019Vermunt L. Sikkes S.A.M. van den Hout A. Handels R. Bos I. van der Flier W.M. Kern S. Ousset P.-J. Maruff P. Skoog I. et al.Duration of preclinical, prodromal, and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE genotype.Alzheimers Dement. 2019; 15: 888-898Google Scholar), characterized by early deposition of Aβ in the precuneus and other cortical regions comprising the default mode network, followed sequentially by regional cortical hypometabolism, accumulation of tau pathology, hippocampal volume loss, and onset of symptomatic cognitive impairment (Figure 1; Bateman et al., 2012Bateman R.J. Xiong C. Benzinger T.L.S. Fagan A.M. Goate A. Fox N.C. Marcus D.S. Cairns N.J. Xie X. Blazey T.M. et al.Dominantly Inherited Alzheimer NetworkClinical and biomarker changes in dominantly inherited Alzheimer’s disease.N. Engl. J. Med. 2012; 367: 795-804Google Scholar, Fagan et al., 2006Fagan A.M. Mintun M.A. Mach R.H. Lee S.-Y. Dence C.S. Shah A.R. LaRossa G.N. Spinner M.L. Klunk W.E. Mathis C.A. et al.Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans.Ann. Neurol. 2006; 59: 512-519Google Scholar, Fagan et al., 2007Fagan A.M. Roe C.M. Xiong C. Mintun M.A. Morris J.C. Holtzman D.M. Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults.Arch. Neurol. 2007; 64: 343-349Google Scholar, Fagan et al., 2014Fagan A.M. Xiong C. Jasielec M.S. Bateman R.J. Goate A.M. Benzinger T.L.S. Ghetti B. Martins R.N. Masters C.L. Mayeux R. et al.Dominantly Inherited Alzheimer NetworkLongitudinal change in CSF biomarkers in autosomal-dominant Alzheimer’s disease.Sci. Transl. Med. 2014; 6: 226ra30Google Scholar, Gordon et al., 2016Gordon B.A. Blazey T. Su Y. Fagan A.M. Holtzman D.M. Morris J.C. Benzinger T.L.S. Longitudinal β-Amyloid Deposition and Hippocampal Volume in Preclinical Alzheimer Disease and Suspected Non-Alzheimer Disease Pathophysiology.JAMA Neurol. 2016; 73: 1192-1200Google Scholar, Gordon et al., 2018Gordon B.A. Blazey T.M. Su Y. Hari-Raj A. Dincer A. Flores S. Christensen J. McDade E. Wang G. Xiong C. et al.Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study.Lancet Neurol. 2018; 17: 241-250Google Scholar, Hanseeuw et al., 2019Hanseeuw B.J. Betensky R.A. Jacobs H.I.L. Schultz A.P. Sepulcre J. Becker J.A. Cosio D.M.O. Farrell M. Quiroz Y.T. Mormino E.C. et al.Association of Amyloid and Tau With Cognition in Preclinical Alzheimer Disease: A Longitudinal Study.JAMA Neurol. 2019; (Published online June 3, 2019)https://doi.org/10.1001/jamaneurol.2019.1424Google Scholar, Jack and Holtzman, 2013Jack Jr., C.R. Holtzman D.M. Biomarker modeling of Alzheimer’s disease.Neuron. 2013; 80: 1347-1358Google Scholar, Morris et al., 2009Morris J.C. Roe C.M. Grant E.A. Head D. Storandt M. Goate A.M. Fagan A.M. Holtzman D.M. Mintun M.A. Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease.Arch. Neurol. 2009; 66: 1469-1475Google Scholar, Vos et al., 2013Vos S.J. Xiong C. Visser P.J. Jasielec M.S. Hassenstab J. Grant E.A. Cairns N.J. Morris J.C. Holtzman D.M. Fagan A.M. Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study.Lancet Neurol. 2013; 12: 957-965Google Scholar). Synaptic and neuronal loss in the entorhinal cortex generally correlates well with onset of cognitive impairment (Gómez-Isla et al., 1996Gómez-Isla T. Price J.L. McKeel Jr., D.W. Morris J.C. Growdon J.H. Hyman B.T. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease.J. Neurosci. 1996; 16: 4491-4500Google Scholar). CSF and plasma neurofilament light chain (NfL) is an emerging biomarker that appears to track the level of general neurodegeneration across all forms of neurodegenerative dementias (Bridel et al., 2019Bridel C. van Wieringen W.N. Zetterberg H. Tijms B.M. Teunissen C.E. Alvarez-Cermeño J.C. Andreasson U. Axelsson M. Bäckström D.C. Bartos A. et al.and the NFL GroupDiagnostic Value of Cerebrospinal Fluid Neurofilament Light Protein in Neurology: A Systematic Review and Meta-analysis.JAMA Neurol. 2019; (Published online June 17, 2019)https://doi.org/10.1001/jamaneurol.2019.1534Google Scholar, Mielke et al., 2019Mielke M.M. Syrjanen J.A. Blennow K. Zetterberg H. Vemuri P. Skoog I. Machulda M.M. Kremers W.K. Knopman D.S. Jack Jr., C. et al.Plasma and CSF neurofilament light: Relation to longitudinal neuroimaging and cognitive measures.Neurology. 2019; 93: e252-e260Google Scholar). Studies of both ADAD and LOAD have demonstrated that rate of change in CSF and plasma NfL levels correlates with cortical thickness on structural MRI and cognitive performance (Mattsson et al., 2019Mattsson N. Cullen N.C. Andreasson U. Zetterberg H. Blennow K. Association Between Longitudinal Plasma Neurofilament Light and Neurodegeneration in Patients With Alzheimer Disease.JAMA Neurol. 2019; 76: 791-799Google Scholar, Preische et al., 2019Preische O. Schultz S.A. Apel A. Kuhle J. Kaeser S.A. Barro C. Gräber S. Kuder-Buletta E. LaFougere C. Laske C. et al.Dominantly Inherited Alzheimer NetworkSerum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease.Nat. Med. 2019; 25: 277-283Google Scholar). Aβ peptide was first identified as the primary constituent of meningovascular amyloid in 1984 (Glenner and Wong, 1984Glenner G.G. Wong C.W. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein.Biochem. Biophys. Res. Commun. 1984; 120: 885-890Google Scholar) and subsequently as the main constituent in amyloid neuritic plaques (Masters et al., 1985Masters C.L. Simms G. Weinman N.A. Multhaup G. McDonald B.L. Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome.Proc. Natl. Acad. Sci. USA. 1985; 82: 4245-4249Google Scholar). Over the ensuing decades, enormous research efforts were expended to clarify the underlying biology of this peptide and its role in AD pathophysiology. Aβ is produced by sequential cleavage of β-amyloid precursor protein (APP) by β-secretase and γ-secretase (Figure 2A; for review, see Haass et al., 2012Haass C. Kaether C. Thinakaran G. Sisodia S. Trafficking and proteolytic processing of APP.Cold Spring Harb. Perspect. Med. 2012; 2: a006270Google Scholar). The β-secretase enzyme (BACE1) cleaves APP at the N terminus of the Aβ sequence, releasing secreted APP-β and the membrane-bound C99 fragment (Vassar et al., 1999Vassar R. Bennett B.D. Babu-Khan S. Kahn S. Mendiaz E.A. Denis P. Teplow D.B. Ross S. Amarante P. Loeloff R. et al.Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE.Science. 1999; 286: 735-741Google Scholar). The γ-secretase complex consists of four protein subunits: presenilin (PSEN), presenilin enhancer (PEN), APH, and Nicastrin. There are multiple isoforms of PSEN (PSEN1/PSEN2) and APH (APHA, APH B/C); up to four different γ-secretase complexes may exist in single cell (Voytyuk et al., 2018Voytyuk I. De Strooper B. Chávez-Gutiérrez L. Modulation of γ- and β-Secretases as Early Prevention Against Alzheimer’s Disease.Biol. Psychiatry. 2018; 83: 320-327Google Scholar, Xia, 2019Xia W. γ-Secretase and its modulators: Twenty years and beyond.Neurosci. Lett. 2019; 701: 162-169Google Scholar). Following cleavage by BACE1, the γ-secretase complex binds to N-terminally cleaved APP fragment (C99) and intramembranously cleaves at the ε-site releasing C-terminal fragment (CTF) and Aβ48. The γ-secretase complex then processes along the remaining Aβ C-terminal end, producing sequentially shorter peptides until the Aβ peptide is released from the complex (generally after producing peptides 38-, 40-, and 42-amino acids in length). Recent publication of high-resolution substrate-enzyme cryogenic electron microscopy (cryo-EM) molecular structures for γ-secretase-APP C83 fragment and γ-secretase-Notch 100 fragment (Yang et al., 2019Yang G. Zhou R. Zhou Q. Guo X. Yan C. Ke M. Lei J. Shi Y. Structural basis of Notch recognition by human γ-secretase.Nature. 2019; 565: 192-197Google Scholar, Zhou et al., 2019Zhou R. Yang G. Guo X. Zhou Q. Lei J. Shi Y. Recognition of the amyloid precursor protein by human γ-secretase.Science. 2019; 363: eaaw0930Google Scholar) has definitively determined substrate binding sites for γ-secretase and lends strong evidence for a helix-unwinding model of sequential substrate processing. BACE1, γ-secretase, and APP form a large molecular complex in vivo, suggesting that Aβ production may be facilitated by directly shuttling APP from one processing enzyme to another (Liu et al., 2019Liu L. Ding L. Rovere M. Wolfe M.S. Selkoe D.J. A cellular complex of BACE1 and γ-secretase sequentially generates Aβ from its full-length precursor.J. Cell Biol. 2019; 218: 644-663Google Scholar). Aβ is produced predominantly in endosomes, and its release from neurons is modulated by synaptic activity (Kamenetz et al., 2003Kamenetz F. Tomita T. Hsieh H. Seabrook G. Borchelt D. Iwatsubo T. Sisodia S. Malinow R. APP processing and synaptic function.Neuron. 2003; 37: 925-937Google Scholar, Wei et al., 2010Wei W. Nguyen L.N. Kessels H.W. Hagiwara H. Sisodia S. Malinow R. Amyloid beta from axons and dendrites reduces local spine number and plasticity.Nat. Neurosci. 2010; 13: 190-196Google Scholar) both presynaptically (Cirrito et al., 2005Cirrito J.R. Yamada K.A. Finn M.B. Sloviter R.S. Bales K.R. May P.C. Schoepp D.D. Paul S.M. Mennerick S. Holtzman D.M. Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo.Neuron. 2005; 48: 913-922Google Scholar, Cirrito et al., 2008Cirrito J.R. Kang J.-E. Lee J. Stewart F.R. Verges D.K. Silverio L.M. Bu G. Mennerick S. Holtzman D.M. Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo.Neuron. 2008; 58: 42-51Google Scholar) and postsynaptically (Verges et al., 2011Verges D.K. Restivo J.L. Goebel W.D. Holtzman D.M. Cirrito J.R. Opposing synaptic regulation of amyloid-β metabolism by NMDA receptors in vivo.J. Neurosci. 2011; 31: 11328-11337Google Scholar). Aβ peptides are prone to aggregate into β sheet conformations in the form of higher-order oligomers, protofibrils, and fibrils, which are detectable in AD brain. Owing to increased hydrophobicity of its expanded C terminus, Aβ42 has a greater propensity for aggregation. Recent cryo-EM experiments have elucidated the structure of synthetically derived Aβ42 fibrils, demonstrating 7 nm diameter fibrils containing two twisted protofilaments consisting of Aβ42 monomers assuming an “LS” shape stacked in parallel with in-register cross-β structure (Gremer et al., 2017Gremer L. Schölzel D. Schenk C. Reinartz E. Labahn J. Ravelli R.B.G. Tusche M. Lopez-Iglesias C. Hoyer W. Heise H. et al.Fibril structure of amyloid-β(1-42) by cryo-electron microscopy.Science. 2017; 358: 116-119Google Scholar). 8 nm amyloid fibrils are present in the center of neuritic plaques, whereas oligomers appear to be detectable among the halo of dystrophic neurites surrounding neuritic plaques (Masters and Selkoe, 2012Masters C.L. Selkoe D.J. Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease.Cold Spring Harb. Perspect. Med. 2012; 2: a006262Google Scholar). There is evidence that the process of Aβ aggregation may require Aβ uptake by microglia followed by intracellular seeding and aggregation (Sosna et al., 2018Sosna J. Philipp S. Albay 3rd, R. Reyes-Ruiz J.M. Baglietto-Vargas D. LaFerla F.M. Glabe C.G. Early long-term administration of the CSF1R inhibitor PLX3397 ablates microglia and reduces accumulation of intraneuronal amyloid, neuritic plaque deposition and pre-fibrillar oligomers in 5XFAD mouse model of Alzheimer’s disease.Mol. Neurodegener. 2018; 13: 11Google Scholar). Aβ fibrillization can be “seeded” in a prion-like manner by the presence of small assemblies of misfolded β sheet-containing Aβ seeds that template the formation of larger amyloid aggregates (Walker and Jucker, 2015Walker L.C. Jucker M. Neurodegenerative diseases: expanding the prion concept.Annu. Rev. Neurosci. 2015; 38: 87-103Google Scholar). Brain extracts containing minute amounts of misfolded Aβ prepared from AD brain or APP transgenic mice, when injected into APP transgenic animals via intracerebral or intraperitoneal routes, will induce cerebral amyloidosis (Eisele et al., 2009Eisele Y.S. Bolmont T. Heikenwalder M. Langer F. Jacobson L.H. Yan Z.-X. Roth K. Aguzzi A. Staufenbiel M. Walker L.C. Jucker M. Induction of cerebral beta-amyloidosis: intracerebral versus systemic Abeta inoculation.Proc. Natl. Acad. Sci. USA. 2009; 106: 12926-12931Google Scholar, Eisele et al., 2010Eisele Y.S. Obermüller U. Heilbronner G. Baumann F. Kaeser S.A. Wolburg H. Walker L.C. Staufenbiel M. Heikenwalder M. Jucker M. Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis.Science. 2010; 330: 980-982Google Scholar, Ye et al., 2015Ye L. Fritschi S.K. Schelle J. Obermüller U. Degenhardt K. Kaeser S.A. Eisele Y.S. Walker L.C. Baumann F. Staufenbiel M. et al.Persistence of Aβ seeds in APP null mouse brain.Nat. Neurosci. 2015; 18: 1559-1561Google Scholar). There is strong evidence that human-to-human transmission of amyloid pathology is possible. Patients who developed iatrogenic Creutzfeld–Jakob disease (CJD) following injections of prion-contaminated growth hormone derived from pooled cadaveric pituitary extracts prior to 1985 have been found in some cases to have significant cerebral and vascular amyloid pathology (congophilic amyloid angiopathy [CAA]) (Jaunmuktane et al., 2015Jaunmuktane Z. Mead S. Ellis M. Wadsworth J.D.F. Nicoll A.J. Kenny J. Launchbury F. Linehan J. Richard-Loendt A. Walker A.S. et al.Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy.Nature. 2015; 525: 247-250Google Scholar). When injected intracerebrally into APP transgenic mice, these extracts are able to seed CAA pathology and cerebellar amyloid deposition (Purro et al., 2018Purro S.A. Farrow M.A. Linehan J. Nazari T. Thomas D.X. Chen Z. Mengel D. Saito T. Saido T. Rudge P. et al.Transmission of amyloid-β protein pathology from cadaveric pituitary growth hormone.Nature. 2018; 564: 415-419Google Scholar). Based on a number of lines of evidence, Hardy and Higgins proposed the amyloid cascade hypothesis in 1992, positing that deposition of Aβ in the brain is the initiating step of AD pathogenesis, leading to subsequent tau deposition, neuron and synaptic loss, and cognitive decline (Hardy and Higgins, 1992Hardy J.A. Higgins G.A. Alzheimer’s disease: the amyloid cascade hypothesis.Science. 1992; 256: 184-185Google Scholar). This hypothesis has been the leading model of AD pathogenesis since it was first proposed, although portions have been revised or supplemented over time (Musiek and Holtzman, 2015Musiek E.S. Holtzman D.M. Three dimensions of the amyloid hypothesis: time, space and ‘wingmen’.Nat. Neurosci. 2015; 18: 800-806Google Scholar, Selkoe and Hardy, 2016Selkoe D.J. Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years.EMBO Mol. Med. 2016; 8: 595-608Google Scholar). The hypothesis is supported by the discovery that exclusively genetic forms of AD, such as ADAD, Down syndrome (trisomy 21), or APP locus duplications, produce an increase in the Aβ42/40 ratio, total Aβ production, or Aβ fibrillinogenic properties and are sufficient to induce typical AD pathology (Tcw and Goate, 2017Tcw J. Goate A.M. Genetics of β-Amyloid Precursor Protein in Alzheimer’s Disease.Cold Spring Harb. Perspect. Med. 2017; 7: a024539Google Scholar). Also, a rare APP mutation A673T that reduces risk of developing AD causes decreased Aβ production (Jonsson et al., 2012Jonsson T. Atwal J.K. Steinberg S. Snaedal J. Jonsson P.V. Bjornsson S. Stefansson H. Sulem P. Gudbjartsson D. Maloney J. et al.A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline.Nature. 2012; 488: 96-99Google Scholar, Martiskainen et al., 2017Martiskainen H. Herukka S.-K. Stančáková A. Paananen J. Soininen H. Kuusisto J. Laakso M. Hiltunen M. Decreased plasma β-amyloid in the Alzheimer’s disease APP A673T variant carriers.Ann. Neurol. 2017; 82: 128-132Google Scholar). In addition, the strongest genetic risk factor for LOAD, apolipoprotein E (APOE), in large part appears to increase risk via influencing Aβ seeding and clearance (Bales et al., 1997Bales K.R. Verina T. Dodel R.C. Du Y. Altstiel L. Bender M. Hyslop P. Johnstone E.M. Little S.P. Cummins D.J. et al.Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition.Nat. Genet. 1997; 17: 263-264Google Scholar, Castellano et al., 2011Castellano J.M. Kim J. Stewart F.R. Jiang H. DeMattos R.B. Patterson B.W. Fagan A.M. Morris J.C. Mawuenyega K.G. Cruchaga C. et al.Human apoE isoforms differentially regulate brain amyloid-β peptide clearance.Sci. Transl. Med. 2011; 3: 89ra57Google Scholar, Verghese et al., 2013Verghese P.B. Castellano J.M. Garai K. Wang Y. Jiang H. Shah A. Bu G. Frieden C. Holtzman D.M. ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions.Proc. Natl. Acad. Sci. USA. 2013; 110: E1807-E1816Google Scholar). While the genetic evidence strongly supports the importance of Aβ aggregation in instigating the AD cascade, it seems clear that Aβ is necessary but not sufficient and that there are other downstream factors that play a key role. For example, there is minimal correlation between phases of amyloid deposition and degree of cognitive decline (Nelson et al., 2012Nelson P.T. Alafuzoff I. Bigio E.H. Bouras C. Braak H. Cairns N.J. Castellani R.J. Crain B.J. Davies P. Del Tredici K. et al.Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature.J. Neuropathol. Exp. Neurol. 2012; 71: 362-381Google Scholar). Also, patterns of regional cerebral amyloid deposition do not correlate with patterns of regional cerebral hypometabolism on functional neuroimaging (Altmann et al., 2015Altmann A. Ng B. Landau S.M. Jagust W.J. Greicius M.D. Alzheimer’s Disease Neuroimaging InitiativeRegional brain hypometabolism is unrelated to regional amyloid plaque burden.Brain. 2015; 138: 3734-3746Google Scholar, Edison et al., 2007Edison P. Archer H.A. Hinz R. Hammers A. Pavese N. Tai Y.F. Hotton G. Cutler D. Fox N. Kennedy A. et al.Amyloid, hypometabolism
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白发布了新的文献求助10
1秒前
科目三应助堪明轩采纳,获得10
1秒前
香蕉觅云应助sunsold采纳,获得30
2秒前
充电宝应助谷雨采纳,获得10
9秒前
sun完成签到,获得积分10
10秒前
大Doctor陈发布了新的文献求助10
10秒前
堪明轩完成签到,获得积分20
11秒前
灵巧的成风完成签到,获得积分10
11秒前
13秒前
河道蟹发布了新的文献求助10
17秒前
科目三应助柏炳采纳,获得10
18秒前
棒棒完成签到,获得积分20
19秒前
20秒前
不取名字完成签到 ,获得积分10
22秒前
24秒前
棒棒发布了新的文献求助10
25秒前
Ldq完成签到 ,获得积分10
27秒前
29秒前
30秒前
Tian完成签到 ,获得积分10
30秒前
sunsold发布了新的文献求助30
35秒前
botanist完成签到 ,获得积分10
35秒前
丁丁发布了新的文献求助10
35秒前
lxz发布了新的文献求助10
36秒前
37秒前
39秒前
39秒前
39秒前
40秒前
41秒前
41秒前
Mike001发布了新的文献求助10
42秒前
李成金发布了新的文献求助10
43秒前
Mike001发布了新的文献求助10
44秒前
qq完成签到 ,获得积分10
45秒前
45秒前
Mike001发布了新的文献求助10
45秒前
柏炳发布了新的文献求助10
45秒前
嘉心糖给嘉心糖的求助进行了留言
46秒前
46秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2405959
求助须知:如何正确求助?哪些是违规求助? 2103847
关于积分的说明 5310611
捐赠科研通 1831379
什么是DOI,文献DOI怎么找? 912539
版权声明 560646
科研通“疑难数据库(出版商)”最低求助积分说明 487894