Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases

医学 肝病学 无线电技术 内科学 结直肠癌 放射科 肿瘤科 癌症
作者
Marjaneh Taghavi,Stefano Trebeschi,Rita Simões,David B. Meek,Rianne C.J. Beckers,Doenja M. J. Lambregts,Cornelis Verhoef,Janneke B. Houwers,Uulke A. van der Heide,Geerard L. Beets,Monique Maas
出处
期刊:Abdominal Imaging [Springer Nature]
卷期号:46 (1): 249-256 被引量:66
标识
DOI:10.1007/s00261-020-02624-1
摘要

Early identification of patients at risk of developing colorectal liver metastases can help personalizing treatment and improve oncological outcome. The aim of this study was to investigate in patients with colorectal cancer (CRC) whether a machine learning-based radiomics model can predict the occurrence of metachronous metastases. In this multicentre study, the primary staging portal venous phase CT of 91 CRC patients were retrospectively analysed. Two groups were assessed: patients without liver metastases at primary staging, or during follow-up of ≥ 24 months (n = 67) and patients without liver metastases at primary staging but developed metachronous liver metastases < 24 months after primary staging (n = 24). After liver parenchyma segmentation, 1767 radiomics features were extracted for each patient. Three predictive models were constructed based on (1) radiomics features, (2) clinical features and (3) a combination of clinical and radiomics features. Stability of features across hospitals was assessed by the Kruskal–Wallis test and inter-correlated features were removed if their correlation coefficient was higher than 0.9. Bayesian-optimized random forest with wrapper feature selection was used for prediction models. The three predictive models that included radiomics features, clinical features and a combination of radiomics with clinical features resulted in an AUC in the validation cohort of 86% (95%CI 85–87%), 71% (95%CI 69–72%) and 86% (95% CI 85–87%), respectively. A machine learning-based radiomics analysis of routine clinical CT imaging at primary staging can provide valuable biomarkers to identify patients at high risk for developing colorectal liver metastases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ysw发布了新的文献求助10
1秒前
科研通AI5应助jzm采纳,获得30
2秒前
飞云完成签到,获得积分10
2秒前
3秒前
嘻嘻完成签到 ,获得积分10
3秒前
3秒前
RLLLLLLL完成签到 ,获得积分10
3秒前
瞿采枫完成签到,获得积分10
4秒前
飘逸的青雪完成签到,获得积分0
4秒前
jintgogch完成签到 ,获得积分10
4秒前
ASA完成签到,获得积分10
4秒前
starleo发布了新的文献求助10
4秒前
就晚安喽完成签到,获得积分10
4秒前
小黑鲨完成签到,获得积分10
5秒前
5秒前
nenoaowu应助Roseret采纳,获得30
5秒前
辛勤的巨人完成签到,获得积分10
5秒前
fanlee完成签到,获得积分10
5秒前
5秒前
5秒前
无心的青寒完成签到,获得积分10
6秒前
是玥玥啊完成签到,获得积分10
6秒前
6秒前
予以完成签到,获得积分10
7秒前
宣以晴完成签到,获得积分10
7秒前
李繁蕊完成签到,获得积分10
7秒前
溜溜发布了新的文献求助10
7秒前
7秒前
8秒前
Zhangtao完成签到,获得积分10
8秒前
潇洒的诗桃完成签到,获得积分0
8秒前
Ms完成签到,获得积分10
9秒前
柳柳发布了新的文献求助20
9秒前
9秒前
拼搏惜金发布了新的文献求助10
9秒前
hym完成签到,获得积分10
10秒前
123456完成签到,获得积分10
10秒前
hahahaman发布了新的文献求助10
11秒前
芝麻发布了新的文献求助10
11秒前
畅快山兰完成签到 ,获得积分10
11秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788560
求助须知:如何正确求助?哪些是违规求助? 3333813
关于积分的说明 10264224
捐赠科研通 3049806
什么是DOI,文献DOI怎么找? 1673705
邀请新用户注册赠送积分活动 802157
科研通“疑难数据库(出版商)”最低求助积分说明 760535