A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes

水色仪 遥感 大气校正 随机森林 均方误差 叶绿素a 卫星 环境科学 计算机科学 数学 地理 统计 人工智能 生态学 浮游植物 生物 植物 营养物 工程类 航空航天工程
作者
Zhigang Cao,Ronghua Ma,Hongtao Duan,Nima Pahlevan,John M. Mélack,Ming Shen,Kun Xue
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:248: 111974-111974 被引量:301
标识
DOI:10.1016/j.rse.2020.111974
摘要

Abstract Landsat-8 Operational Land Imager (OLI) provides an opportunity to map chlorophyll-a (Chla) in lake waters at spatial scales not feasible with ocean color missions. Although state-of-the-art algorithms to estimate Chla in lakes from satellite-borne sensors have improved, there are no robust and reliable algorithms to generate Chla time series from OLI imageries in turbid lakes due to the absence of a red-edge band and issues with atmospheric correction. Here, a machine learning approach termed the extreme gradient boosting tree (BST) was employed to develop an algorithm for Chla estimation from OLI in turbid lakes. This model was developed and validated by linking Rayleigh-corrected reflectance to near-synchronous in situ Chla data available from eight lakes in eastern China (N = 225) and three coastal and inland waters in SeaWiFS Bio-optical Archive and Storage System (N = 97). The BST model performed well on a subset of data (N = 102, R2 = 0.79, root mean squared difference = 7.1 μg L−1, mean absolute percentage error = 24%, mean absolute error = 1.4, Bias = 0.9), and had better Chla retrievals than several band-ratio algorithms and a random forest approach. The performance of BST model was judged as appropriate only for the range of conditions in the training data. Given these limitations, spatial and temporal variations of Chla in hundreds of lakes larger than 1 km2 in eastern China for the period of 2013–2018 were mapped using the BST model. OLI-derived Chla indicated that small lakes (
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Laniakea发布了新的文献求助10
刚刚
活泼溪流完成签到,获得积分10
刚刚
BIN完成签到,获得积分20
刚刚
aqqqqq完成签到,获得积分10
1秒前
共享精神应助不敢装睡采纳,获得10
1秒前
2秒前
ZZY完成签到,获得积分10
3秒前
3秒前
动听从寒完成签到,获得积分20
4秒前
努力的小明明完成签到,获得积分10
4秒前
pluto应助白日梦想家采纳,获得10
5秒前
5秒前
今后应助Supreme采纳,获得10
5秒前
专炸油条完成签到 ,获得积分10
5秒前
5秒前
lisier完成签到,获得积分10
6秒前
CodeCraft应助知还采纳,获得10
6秒前
随遇而安给YY的求助进行了留言
6秒前
6秒前
上官若男应助科研小废废采纳,获得10
8秒前
科研通AI5应助acc采纳,获得10
8秒前
科研通AI5应助舒适路人采纳,获得10
8秒前
9秒前
9秒前
万能图书馆应助神勇初瑶采纳,获得30
9秒前
kk关注了科研通微信公众号
9秒前
9秒前
Leach发布了新的文献求助10
10秒前
李爱国应助wind采纳,获得10
10秒前
deepast完成签到,获得积分10
10秒前
mzhnx发布了新的文献求助30
11秒前
酷波er应助ehinqz采纳,获得10
11秒前
科研通AI5应助starkisses采纳,获得30
12秒前
12秒前
12秒前
13秒前
852应助橙ccc美式采纳,获得10
13秒前
阳光铭媚完成签到,获得积分10
13秒前
Linly发布了新的文献求助10
13秒前
娃哈哈完成签到,获得积分20
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786101
求助须知:如何正确求助?哪些是违规求助? 3331636
关于积分的说明 10251844
捐赠科研通 3046973
什么是DOI,文献DOI怎么找? 1672320
邀请新用户注册赠送积分活动 801243
科研通“疑难数据库(出版商)”最低求助积分说明 760059