已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Gesture Recognition in Robotic Surgery: A Review

计算机科学 判别式 手势 人工智能 手势识别 解析 特征(语言学) 分割 机器学习 领域(数学) 特征提取 开放式研究 模式识别(心理学) 数学 纯数学 哲学 语言学 万维网
作者
Beatrice van Amsterdam,Matthew J. Clarkson,Danail Stoyanov
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:68 (6): 2021-2035 被引量:98
标识
DOI:10.1109/tbme.2021.3054828
摘要

Objective: Surgical activity recognition is a fundamental step in computer-assisted interventions. This paper reviews the state-of-the-art in methods for automatic recognition of fine-grained gestures in robotic surgery focusing on recent data-driven approaches and outlines the open questions and future research directions. Methods: An article search was performed on 5 bibliographic databases with the following search terms: robotic, robot-assisted, JIGSAWS, surgery, surgical, gesture, fine-grained, surgeme, action, trajectory, segmentation, recognition, parsing. Selected articles were classified based on the level of supervision required for training and divided into different groups representing major frameworks for time series analysis and data modelling. Results: A total of 52 articles were reviewed. The research field is showing rapid expansion, with the majority of articles published in the last 4 years. Deep-learning-based temporal models with discriminative feature extraction and multi-modal data integration have demonstrated promising results on small surgical datasets. Currently, unsupervised methods perform significantly less well than the supervised approaches. Conclusion: The development of large and diverse open-source datasets of annotated demonstrations is essential for development and validation of robust solutions for surgical gesture recognition. While new strategies for discriminative feature extraction and knowledge transfer, or unsupervised and semi-supervised approaches, can mitigate the need for data and labels, they have not yet been demonstrated to achieve comparable performance. Important future research directions include detection and forecast of gesture-specific errors and anomalies. Significance: This paper is a comprehensive and structured analysis of surgical gesture recognition methods aiming to summarize the status of this rapidly evolving field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
肾虚泥巴狗完成签到,获得积分10
4秒前
123456发布了新的文献求助10
4秒前
就看最后一篇完成签到 ,获得积分10
4秒前
不开心就吃糖完成签到,获得积分10
4秒前
5秒前
5秒前
pterionGao完成签到 ,获得积分10
7秒前
henry先森发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
11秒前
gosu发布了新的文献求助10
11秒前
12秒前
N2H4发布了新的文献求助10
14秒前
randi完成签到,获得积分10
15秒前
一二完成签到 ,获得积分10
16秒前
闪闪尔白发布了新的文献求助10
17秒前
Kunning发布了新的文献求助10
17秒前
19秒前
21秒前
22秒前
litingting完成签到,获得积分10
23秒前
zong240221完成签到 ,获得积分10
24秒前
优雅的帅哥完成签到 ,获得积分10
25秒前
遇上就这样吧应助2780034682采纳,获得30
26秒前
litingting发布了新的文献求助10
26秒前
mount发布了新的文献求助10
27秒前
薛栋潮完成签到 ,获得积分20
27秒前
27秒前
28秒前
29秒前
crainbowc完成签到,获得积分10
30秒前
小张完成签到 ,获得积分10
31秒前
chen发布了新的文献求助200
33秒前
123456完成签到,获得积分10
33秒前
南念发布了新的文献求助10
34秒前
gosu完成签到 ,获得积分10
35秒前
JJbond完成签到 ,获得积分10
35秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830329
求助须知:如何正确求助?哪些是违规求助? 3372734
关于积分的说明 10474907
捐赠科研通 3092457
什么是DOI,文献DOI怎么找? 1702090
邀请新用户注册赠送积分活动 818797
科研通“疑难数据库(出版商)”最低求助积分说明 771087