亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient Importance Sampling in Quasi-Monte Carlo Methods for Computational Finance

数学 方差减少 稳健性(进化) 蒙特卡罗方法 维数(图论) 应用数学 高斯分布 重要性抽样 数学优化 降维 控制变量 还原(数学) 算法 计算机科学 纯数学 混合蒙特卡罗 人工智能 统计 物理 马尔科夫蒙特卡洛 生物化学 化学 几何学 量子力学 基因
作者
Chaojun Zhang,Xiaoqun Wang,Zhijian He
出处
期刊:SIAM Journal on Scientific Computing [Society for Industrial and Applied Mathematics]
卷期号:43 (1): B1-B29 被引量:9
标识
DOI:10.1137/19m1280065
摘要

We consider integration with respect to a $d$-dimensional spherical Gaussian measure arising from computational finance. Importance sampling (IS) is one of the most important variance reduction techniques in Monte Carlo (MC) methods. In this paper, two kinds of IS are studied in randomized quasi-MC (RQMC) setting, namely, the optimal drift IS (ODIS) and the Laplace IS (LapIS). Traditionally, the LapIS is obtained by mimicking the behavior of the optimal IS density with ODIS as its special case. We prove that the LapIS can also be obtained by an approximate optimization procedure based on the Laplace approximation. We study the promises and limitations of IS in RQMC methods and develop efficient RQMC-based IS procedures. We focus on how to properly combine IS with conditional MC (CMC) and dimension reduction methods in RQMC. In our procedures, the integrands are first smoothed by using CMC. Then the LapIS or the ODIS is performed, where several orthogonal matrices are required to be chosen to reduce the effective dimension. Intuitively, designing methods to determine all these optimal matrices seems infeasible. Fortunately, we prove that as long as the last orthogonal matrix is chosen elaborately, the choices of the other matrices can be arbitrary. This helps to significantly simplify the RQMC-based IS procedure. Due to the robustness and the superiority in efficiency of the gradient principal component analysis (GPCA) method, we use the GPCA method as an effective dimension reduction method in our RQMC-based IS procedures. Moreover, we prove the integrands obtained by the GPCA method are statistically equivalent. Numerical experiments illustrate the superiority of our proposed RQMC-based IS procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得20
15秒前
jintian完成签到 ,获得积分10
21秒前
科研通AI5应助尹懿子采纳,获得10
24秒前
32秒前
傲娇的笑白完成签到 ,获得积分10
37秒前
尹懿子发布了新的文献求助10
38秒前
42秒前
42秒前
44秒前
小溪发布了新的文献求助10
48秒前
山青水秀完成签到,获得积分20
51秒前
TongKY完成签到 ,获得积分10
55秒前
潘果果完成签到,获得积分10
1分钟前
李健应助山青水秀采纳,获得10
1分钟前
六六完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Kevin发布了新的文献求助10
1分钟前
汉堡包应助这橘不甜采纳,获得30
1分钟前
山青水秀给山青水秀的求助进行了留言
1分钟前
英姑应助这橘不甜采纳,获得30
1分钟前
1分钟前
俊逸海瑶发布了新的文献求助10
1分钟前
Tethys完成签到 ,获得积分10
1分钟前
1分钟前
jjjeneny发布了新的文献求助10
1分钟前
小蘑菇应助jjjeneny采纳,获得10
2分钟前
2分钟前
YifanWang应助这橘不甜采纳,获得30
2分钟前
2分钟前
sqHALO发布了新的文献求助30
2分钟前
俊逸海瑶完成签到,获得积分10
2分钟前
2分钟前
2分钟前
sqHALO完成签到,获得积分20
2分钟前
逸云完成签到,获得积分20
2分钟前
这橘不甜发布了新的文献求助30
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795552
求助须知:如何正确求助?哪些是违规求助? 3340566
关于积分的说明 10300530
捐赠科研通 3057097
什么是DOI,文献DOI怎么找? 1677428
邀请新用户注册赠送积分活动 805404
科研通“疑难数据库(出版商)”最低求助积分说明 762507