SubLocEP: a novel ensemble predictor of subcellular localization of eukaryotic mRNA based on machine learning

一般化 计算机科学 特征(语言学) 人工智能 序列(生物学) 翻译(生物学) 机器学习 数据挖掘 模式识别(心理学) 信使核糖核酸 数学 基因 生物 数学分析 哲学 语言学 生物化学 遗传学
作者
Jing Li,Lichao Zhang,He Shida,Fei Guo,Quan Zou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (5) 被引量:12
标识
DOI:10.1093/bib/bbaa401
摘要

mRNA location corresponds to the location of protein translation and contributes to precise spatial and temporal management of the protein function. However, current assignment of subcellular localization of eukaryotic mRNA reveals important limitations: (1) turning multiple classifications into multiple dichotomies makes the training process tedious; (2) the majority of the models trained by classical algorithm are based on the extraction of single sequence information; (3) the existing state-of-the-art models have not reached an ideal level in terms of prediction and generalization ability. To achieve better assignment of subcellular localization of eukaryotic mRNA, a better and more comprehensive model must be developed.In this paper, SubLocEP is proposed as a two-layer integrated prediction model for accurate prediction of the location of sequence samples. Unlike the existing models based on limited features, SubLocEP comprehensively considers additional feature attributes and is combined with LightGBM to generated single feature classifiers. The initial integration model (single-layer model) is generated according to the categories of a feature. Subsequently, two single-layer integration models are weighted (sequence-based: physicochemical properties = 3:2) to produce the final two-layer model. The performance of SubLocEP on independent datasets is sufficient to indicate that SubLocEP is an accurate and stable prediction model with strong generalization ability. Additionally, an online tool has been developed that contains experimental data and can maximize the user convenience for estimation of subcellular localization of eukaryotic mRNA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赴长安完成签到,获得积分10
刚刚
刚刚
刚刚
sandwich完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
完美世界应助皮卡丘2023采纳,获得10
4秒前
XX发布了新的文献求助10
4秒前
思源应助失眠星星采纳,获得10
6秒前
6秒前
陈芒果啊完成签到 ,获得积分10
6秒前
CipherSage应助marigold采纳,获得10
6秒前
木子乐发布了新的文献求助10
6秒前
7秒前
7秒前
小巧麦片发布了新的文献求助10
7秒前
7秒前
今朝完成签到,获得积分20
8秒前
小小小发布了新的文献求助10
8秒前
10秒前
林林林发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
瘦瘦的小蘑菇完成签到,获得积分10
12秒前
13秒前
kang完成签到,获得积分10
13秒前
Yu发布了新的文献求助30
13秒前
SciGPT应助许可俊采纳,获得10
13秒前
所所应助xiaolu采纳,获得10
13秒前
孙乐777完成签到,获得积分10
14秒前
14秒前
14秒前
小缓发布了新的文献求助10
15秒前
xiaoyeken发布了新的文献求助10
15秒前
粽粽发布了新的文献求助10
16秒前
16秒前
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791873
求助须知:如何正确求助?哪些是违规求助? 3336211
关于积分的说明 10279514
捐赠科研通 3052867
什么是DOI,文献DOI怎么找? 1675394
邀请新用户注册赠送积分活动 803397
科研通“疑难数据库(出版商)”最低求助积分说明 761278