亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SubLocEP: a novel ensemble predictor of subcellular localization of eukaryotic mRNA based on machine learning

一般化 计算机科学 特征(语言学) 人工智能 序列(生物学) 翻译(生物学) 机器学习 数据挖掘 模式识别(心理学) 信使核糖核酸 数学 基因 生物 数学分析 哲学 生物化学 遗传学 语言学
作者
Jing Li,Lichao Zhang,He Shida,Fei Guo,Quan Zou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (5) 被引量:12
标识
DOI:10.1093/bib/bbaa401
摘要

mRNA location corresponds to the location of protein translation and contributes to precise spatial and temporal management of the protein function. However, current assignment of subcellular localization of eukaryotic mRNA reveals important limitations: (1) turning multiple classifications into multiple dichotomies makes the training process tedious; (2) the majority of the models trained by classical algorithm are based on the extraction of single sequence information; (3) the existing state-of-the-art models have not reached an ideal level in terms of prediction and generalization ability. To achieve better assignment of subcellular localization of eukaryotic mRNA, a better and more comprehensive model must be developed.In this paper, SubLocEP is proposed as a two-layer integrated prediction model for accurate prediction of the location of sequence samples. Unlike the existing models based on limited features, SubLocEP comprehensively considers additional feature attributes and is combined with LightGBM to generated single feature classifiers. The initial integration model (single-layer model) is generated according to the categories of a feature. Subsequently, two single-layer integration models are weighted (sequence-based: physicochemical properties = 3:2) to produce the final two-layer model. The performance of SubLocEP on independent datasets is sufficient to indicate that SubLocEP is an accurate and stable prediction model with strong generalization ability. Additionally, an online tool has been developed that contains experimental data and can maximize the user convenience for estimation of subcellular localization of eukaryotic mRNA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
哦哟发布了新的文献求助10
9秒前
老石完成签到 ,获得积分10
12秒前
24秒前
无花果应助哦哟采纳,获得10
28秒前
Jowill发布了新的文献求助10
28秒前
29秒前
34秒前
量子星尘发布了新的文献求助10
34秒前
40秒前
暖暖完成签到,获得积分10
42秒前
MchemG举报来杯生椰拿铁求助涉嫌违规
47秒前
幽默的太阳完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
斯文渊思完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
Parotodus完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
Yolenders完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
常有李完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
芒芒发paper完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
哇塞完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Immigrant Incorporation in East Asian Democracies 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3972809
求助须知:如何正确求助?哪些是违规求助? 3517106
关于积分的说明 11186225
捐赠科研通 3252663
什么是DOI,文献DOI怎么找? 1796589
邀请新用户注册赠送积分活动 876487
科研通“疑难数据库(出版商)”最低求助积分说明 805701