亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of recurrence after surgery in colorectal cancer patients using radiomics from diagnostic contrast-enhanced computed tomography: a two-center study

医学 放射科 特征选择 无线电技术 逻辑回归 神经组阅片室 Lasso(编程语言) 背景(考古学) 结直肠癌 人工智能 多元统计 阶段(地层学) 核医学 癌症 内科学 机器学习 计算机科学 万维网 古生物学 精神科 生物 神经学
作者
Bogdan Badic,Ronrick Da‐ano,Karine Poirot,Vincent Jaouen,Benoît Magnin,Johan Gagnière,Denis Pezet,Mathieu Hatt,Dimitris Visvikis
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (1): 405-414 被引量:21
标识
DOI:10.1007/s00330-021-08104-4
摘要

To assess the value of contrast-enhanced (CE) diagnostic CT scans characterized through radiomics as predictors of recurrence for patients with stage II and III colorectal cancer in a two-center context. This study included 193 patients diagnosed with stage II and III colorectal adenocarcinoma from 1 July 2008 to 15 March 2017 in two different French University Hospitals. To compensate for the variability in two-center data, a statistical harmonization method Bootstrapped ComBat (B-ComBat) was used. Models predicting disease-free survival (DFS) were built using 3 different machine learning (ML): (1) multivariate regression (MR) with 10-fold cross-validation after feature selection based on least absolute shrinkage and selection operator (LASSO), (2) random forest (RF), and (3) support vector machine (SVM), both with embedded feature selection. The performance for both balanced and 95% sensitivity models was systematically higher after our proposed B-ComBat harmonization compared to the use of the original untransformed data. The most clinically relevant performance was achieved by the multivariate regression model combining a clinical variable (postoperative chemotherapy) with two radiomics shape descriptors (compactness and least axis length) with a BAcc of 0.78 and an MCC of 0.6 associated with a required sensitivity of 95%. The resulting stratification in terms of DFS was significant (p = 0.00021), especially compared to the use of unharmonized original data (p = 0.17). Radiomics models derived from contrast-enhanced CT could be trained and validated in a two-center cohort with a good predictive performance of recurrence in stage II et III colorectal cancer patients. • Adjuvant therapy decision in colorectal cancer can be a challenge in medical oncology. • Radiomics models, derived from diagnostic CT, trained and validated in a two-center cohort, could predict recurrence in stage II and III colorectal cancer patients. • Identifying patients with a low risk of recurrence, these models could facilitate treatment optimization and avoid unnecessary treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助笔墨留香采纳,获得10
1秒前
倩倩14发布了新的文献求助10
2秒前
4秒前
伯云发布了新的文献求助200
4秒前
Ss完成签到 ,获得积分10
8秒前
10秒前
13秒前
科研小白发布了新的文献求助10
16秒前
倩倩14完成签到,获得积分20
16秒前
dingbeicn完成签到,获得积分10
18秒前
20秒前
zyh发布了新的文献求助10
20秒前
大个应助Rita采纳,获得10
25秒前
Tom完成签到 ,获得积分10
25秒前
27秒前
29秒前
NLJY完成签到,获得积分10
29秒前
32秒前
笔墨留香发布了新的文献求助10
33秒前
李健应助mmyhn采纳,获得10
33秒前
程小柒完成签到 ,获得积分10
33秒前
李健应助酸奶烤着吃采纳,获得10
35秒前
科研通AI5应助酸奶烤着吃采纳,获得10
35秒前
JamesPei应助CIXI采纳,获得10
35秒前
坚强的纸飞机完成签到,获得积分10
36秒前
37秒前
38秒前
天天天才完成签到,获得积分10
41秒前
Lucas应助wuuw采纳,获得10
44秒前
45秒前
45秒前
45秒前
46秒前
完美世界应助木叶流2022采纳,获得10
47秒前
君莫笑完成签到 ,获得积分10
47秒前
49秒前
52秒前
53秒前
wzzhhh发布了新的文献求助10
53秒前
BREEZE发布了新的文献求助10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4900164
求助须知:如何正确求助?哪些是违规求助? 4180229
关于积分的说明 12976542
捐赠科研通 3944667
什么是DOI,文献DOI怎么找? 2163806
邀请新用户注册赠送积分活动 1182081
关于科研通互助平台的介绍 1087979