Efficient bootstrap stacking ensemble learning model applied to wind power generation forecasting

风电预测 集成学习 计算机科学 风力发电 人工智能 人工神经网络 机器学习 集合预报 样品(材料) 理论(学习稳定性) 电力系统 功率(物理) 工程类 电气工程 物理 量子力学 化学 色谱法
作者
Matheus Henrique Dal Molin Ribeiro,Ramon Gomes da Silva,Sinvaldo Rodrigues Moreno,Viviana Cocco Mariani,Leandro dos Santos Coelho
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier BV]
卷期号:136: 107712-107712 被引量:103
标识
DOI:10.1016/j.ijepes.2021.107712
摘要

The use of wind energy plays a vital role in society owing to its economic and environmental importance. Knowing the wind power generation within a specific time window is useful for facilitating decision making in terms of maintenance, electricity market clearing, and reload sharing. However, the effect of climatic and demographic factors on wind power generation sometimes makes time series forecasting a complex task. Thus, this study evaluates an ensemble learning model that combines bagging and stacking methods applied to time series forecasting with very short-term (10 and 30-minutes) and short-term (60 and 120-minutes) evaluations of wind power generation. Arithmetic and weighted average values were used to integrate the samples from bagging strategy. The weights are defined through multi-objective optimization using a non-dominated sorting genetic algorithm – version II, aiming to enhance the forecasting accuracy and stability simultaneously. To demonstrate the wide applicability of the non-linear ensemble learning model, it is extensively tested with measurement data collected from two wind farms in Bahia State, Brazil. The experimental results show that the proposed ensemble learning model achieves a better forecasting performance than single forecasting models, such as stacking, machine learning, artificial neural networks, and statistical models, with values of approximately 7.63%, 7.58%, 20.8%, and 25%, respectively, in terms of the errors for out-of-sample forecasting reduction. In addition, results with a weighted average are 87.5% superior to those with an arithmetic average for out-of-sample wind power forecasting in the evaluated forecasting horizons. The findings show that the integration of ensemble strategies can provide accurate forecasting results in the renewable energy field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
内向瑾瑜完成签到,获得积分10
2秒前
大胆的时光完成签到 ,获得积分10
3秒前
judy发布了新的文献求助10
3秒前
超级诗桃完成签到,获得积分10
4秒前
4秒前
shi完成签到,获得积分10
5秒前
光头强应助苗笑卉采纳,获得10
6秒前
SciGPT应助内向瑾瑜采纳,获得10
6秒前
笨笨的白梅完成签到,获得积分10
8秒前
super完成签到,获得积分10
8秒前
wlL发布了新的文献求助10
9秒前
10秒前
小白发布了新的文献求助10
14秒前
Ava应助健忘的金采纳,获得10
15秒前
ahsisalah完成签到,获得积分10
16秒前
16秒前
细心嚓茶发布了新的文献求助10
17秒前
科研通AI5应助syx采纳,获得10
17秒前
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
xiaotudou95应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
iNk应助HP采纳,获得20
19秒前
20秒前
wlL完成签到,获得积分10
21秒前
qwt发布了新的文献求助10
22秒前
风中的语堂完成签到,获得积分10
22秒前
飞仔123完成签到 ,获得积分10
23秒前
CodeCraft应助可靠的中心采纳,获得10
24秒前
羽楠完成签到,获得积分10
24秒前
汤雯慧完成签到,获得积分10
24秒前
DDDOG完成签到,获得积分10
24秒前
打打应助yl采纳,获得10
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784104
求助须知:如何正确求助?哪些是违规求助? 3329207
关于积分的说明 10240907
捐赠科研通 3044742
什么是DOI,文献DOI怎么找? 1671248
邀请新用户注册赠送积分活动 800203
科研通“疑难数据库(出版商)”最低求助积分说明 759241