Spatio-temporal K-NN prediction of traffic state based on statistical features in neighbouring roads

流量(计算机网络) 人工神经网络 计算机科学 基于Kerner三相理论的交通拥堵重构 交通拥挤 聚类分析 运输工程 人工智能 工程类 计算机网络
作者
Bagus Priambodo,Azlina Ahmad,Rabiah Abdul Kadir
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:40 (5): 9059-9072 被引量:7
标识
DOI:10.3233/jifs-201493
摘要

Traffic congestion on a road results in a ripple effect to other neighbouring roads. Previous research revealed existence of spatial correlation on neighbouring roads. Similar traffic patterns with regards to day and time can be seen amongst roads in a neighbouring area. Presently, nonlinear models of neural network are applied on historical data to predict traffic congestion. Even though neural network has successfully modelled complex relationships, more time is needed to train the network. A non-parametric approach, the k-nearest neighbour (K-NN) is another method for forecasting traffic condition which can capture the nonlinear characteristics of traffic flow. An earlier study has been done to predict traffic flow using K-NN based on connected roads (both downstream and upstream). However, impact of road congestion is not only to connected roads, but also to roads surrounding it. Surrounding roads that are impacted by road congestion are those having ‘high relationship’ with neighbouring roads. Thus, this study aims to predict traffic state using K-NN by determining high relationship roads within neighbouring roads. We determine the highest relationship neighbouring roads by clustering the surrounding roads by combining grey level co-occurrence matrix (GLCM) with k-means. Our experiments showed that prediction of traffic state using K-NN based on high relationship roads using both GLCM and k-means produced better accuracy than using k-means only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心雪一完成签到 ,获得积分10
1秒前
英俊的铭应助CY采纳,获得10
2秒前
爆米花应助冷酷的丁丁采纳,获得10
2秒前
3秒前
QR发布了新的文献求助10
4秒前
Jasper应助之桃采纳,获得10
5秒前
羊青丝发布了新的文献求助10
8秒前
9秒前
spinning完成签到,获得积分10
10秒前
Lucas应助dff采纳,获得10
11秒前
13秒前
承序完成签到,获得积分10
14秒前
请问发布了新的文献求助10
15秒前
思源应助MMP采纳,获得10
17秒前
黑妖发布了新的文献求助10
17秒前
玉山小霸王完成签到,获得积分10
19秒前
熊大发布了新的文献求助25
21秒前
karL完成签到,获得积分10
23秒前
mangle完成签到,获得积分10
24秒前
帅气小医仙完成签到 ,获得积分10
27秒前
swing发布了新的文献求助10
28秒前
李健的小迷弟应助少三点采纳,获得10
29秒前
Chris完成签到 ,获得积分0
30秒前
31秒前
田様应助黑妖采纳,获得10
31秒前
32秒前
觉得太贵完成签到 ,获得积分10
35秒前
科目三应助Morem采纳,获得20
36秒前
田田完成签到 ,获得积分10
38秒前
所所应助yifanchen采纳,获得10
42秒前
43秒前
wen完成签到,获得积分10
44秒前
46秒前
雪飞杨完成签到 ,获得积分10
46秒前
46秒前
47秒前
情怀应助科研通管家采纳,获得10
48秒前
所所应助科研通管家采纳,获得10
48秒前
zhu97应助科研通管家采纳,获得20
48秒前
英姑应助科研通管家采纳,获得10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777986
求助须知:如何正确求助?哪些是违规求助? 3323635
关于积分的说明 10215128
捐赠科研通 3038833
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339