套利
随机波动
子空间拓扑
随机微分方程
生成模型
计算机科学
二次变异
波动性(金融)
玻尔兹曼机
生成语法
应用数学
计量经济学
数学
人工智能
经济
统计
布朗运动
人工神经网络
财务
作者
Brian Ning,Sebastian Jaimungal,Xiaorong Zhang,Maxime Bergeron
摘要
.We propose a hybrid method for generating arbitrage-free implied volatility (IV) surfaces consistent with historical data by combining model-free variational autoencoders (VAEs) with continuous time stochastic differential equation (SDE) driven models. We focus on two classes of SDE models: regime switching models and Lévy additive processes. By projecting historical surfaces onto the space of SDE model parameters, we obtain a distribution on the parameter subspace faithful to the data on which we then train a VAE. Arbitrage-free IV surfaces are then generated by sampling from the posterior distribution on the latent space, decoding to obtain SDE model parameters, and finally mapping those parameters to IV surfaces. We further refine the VAE model by including conditional features and demonstrate its superior generative out-of-sample performance. Finally, we showcase how our method can be used as a data augmentation tool to help practitioners manage the tail risk of option portfolios.Keywordsmachine learningcomputational financeimplied volatilityvariational autoencoderLévy processesMSC codes91-0891G2068T07
科研通智能强力驱动
Strongly Powered by AbleSci AI