Self-packaged high-resolution liquid metal nano-patterns

液态金属 激光器 平版印刷术 纳米- 光电子学 纳米光刻 材料科学 纳米技术 光学 复合材料 制作 医学 物理 病理 替代医学
作者
Licong An,Haoqing Jiang,Danilo de Camargo Branco,Xingtao Liu,Jin Xu,Gary J. Cheng
出处
期刊:Matter [Elsevier BV]
卷期号:5 (3): 1016-1030 被引量:28
标识
DOI:10.1016/j.matt.2022.01.004
摘要

•Laser interference lithography is invented for nano-patterning liquid metal (LM) •The resolution in LM patterns breaks the optical limit of laser beams •Pulsed-laser-induced compression enables uniform ∼500-nm LM nanolayers •The robust oxide shell on LM boosts the mechanical properties and reliability High-resolution self-packaged conductive patterns are important in integrated electronics used in harsh environments. One of the most promising candidates is gallium-based liquid due to its unique properties. Here, we introduce an advanced liquid metal nano-patterning technique based on pulsed laser lithography (PLL) to create self-packaged, high-resolution liquid metal patterns. The method described here, for the first time, can directly generate liquid metal nano-patterns with ∼500-nm line width without being limited by laser beam size. Line-scanning pulsed-laser-induced shock and thermal effects could generate compression on the liquid metal to extrude ∼200-nm particles to an ∼30-nm layer covered by an ∼20-nm oxide shell with boosted mechanical properties. When subjected to external damage, the electrical functionality of the nano-patterns is well maintained due to the protective self-packaged shell and its 3D structure. The electrically self-packaged material with high resolution is a promising candidate to serve in demanding applications with high integration densities. High-resolution self-packaged conductive patterns are important in integrated electronics used in harsh environments. One of the most promising candidates is gallium-based liquid due to its unique properties. Here, we introduce an advanced liquid metal nano-patterning technique based on pulsed laser lithography (PLL) to create self-packaged, high-resolution liquid metal patterns. The method described here, for the first time, can directly generate liquid metal nano-patterns with ∼500-nm line width without being limited by laser beam size. Line-scanning pulsed-laser-induced shock and thermal effects could generate compression on the liquid metal to extrude ∼200-nm particles to an ∼30-nm layer covered by an ∼20-nm oxide shell with boosted mechanical properties. When subjected to external damage, the electrical functionality of the nano-patterns is well maintained due to the protective self-packaged shell and its 3D structure. The electrically self-packaged material with high resolution is a promising candidate to serve in demanding applications with high integration densities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哒哒发布了新的文献求助10
刚刚
林林完成签到,获得积分10
1秒前
1秒前
爆米花应助动听的雪碧采纳,获得10
2秒前
3秒前
小二郎应助Chrystal_lin采纳,获得10
3秒前
3秒前
4秒前
6秒前
张欢欢发布了新的文献求助10
7秒前
哒哒完成签到 ,获得积分20
8秒前
不安青牛应助浮世清欢采纳,获得10
9秒前
kaikai晴应助wgy采纳,获得10
9秒前
9秒前
max完成签到,获得积分10
11秒前
稻草人发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
15秒前
sheep完成签到,获得积分10
16秒前
浮世清欢完成签到,获得积分20
17秒前
17秒前
18秒前
Luna发布了新的文献求助10
19秒前
容若发布了新的文献求助10
19秒前
卢莹完成签到,获得积分10
20秒前
miracle发布了新的文献求助10
21秒前
闵问柳发布了新的文献求助10
23秒前
情怀应助留胡子的书桃采纳,获得10
23秒前
24秒前
25秒前
lzl发布了新的文献求助10
26秒前
flysky120发布了新的文献求助10
27秒前
NexusExplorer应助哒哒采纳,获得10
28秒前
正直的松鼠完成签到 ,获得积分10
29秒前
30秒前
张欢欢完成签到,获得积分10
31秒前
31秒前
demom完成签到,获得积分10
32秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Media as Procedures of Communication 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4134714
求助须知:如何正确求助?哪些是违规求助? 3671425
关于积分的说明 11608751
捐赠科研通 3367509
什么是DOI,文献DOI怎么找? 1849978
邀请新用户注册赠送积分活动 913493
科研通“疑难数据库(出版商)”最低求助积分说明 828692