Theory‐guided machine learning for optimal autoclave co‐curing of sandwich composite structures

材料科学 热固性聚合物 复合数 复合材料 固化(化学) 参数化复杂度 多孔性 复合材料层合板 机械工程 结构工程 计算机科学 算法 工程类
作者
Tania Lavaggi,Mina Samizadeh,Navid Niknafs Kermani,Mohammad Mahdi Khalili,Suresh G. Advani
出处
期刊:Polymer Composites [Wiley]
卷期号:43 (8): 5319-5331 被引量:10
标识
DOI:10.1002/pc.26829
摘要

Abstract The bonding of a honeycomb core to the thermoset prepreg facesheets by co‐curing them allows one to manufacture composite sandwich structures in a single operation. However, the process is strongly dependent on the prescribed autoclave cure cycle. A previously developed physics‐based simulation can predict the bond quality as a function of the process parameters. The disadvantage of physics‐based simulations is the high computational effort needed to identify the optimal cure cycle to fabricate sandwich structures with desired bond‐line properties. Theory guided machine learning (TGML) methods have demonstrated their capabilities to reduce the computational effort for different applications. In this work, three TGML models are trained on a data set produced from physics‐based simulations to predict the co‐cure process of honeycomb sandwich structures. The accuracy of the TGML models were compared to select the best performing predictive tool. In addition to reduction of computational time by orders of magnitude, we demonstrate how the TGML tools can also quantify the contribution of each process parameter on the properties of the fabricated part. The most accurate model was implemented in an optimization routine to tune the input process parameters to obtain the desired properties such as the bond‐line porosity and facesheet consolidation level. This methodology could be extended to any process simulation of composites manufacturing processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Harry应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
zyx应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
刚刚
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
zyx应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
刚刚
1秒前
kao2oak完成签到 ,获得积分10
1秒前
1秒前
传奇3应助3333采纳,获得10
2秒前
zy完成签到 ,获得积分10
2秒前
fanatic发布了新的文献求助10
3秒前
kao2oak关注了科研通微信公众号
4秒前
4秒前
muse999发布了新的文献求助10
5秒前
悦耳的涫发布了新的文献求助10
6秒前
慕青应助xu采纳,获得10
7秒前
Leo发布了新的文献求助10
9秒前
李健应助lllllll采纳,获得30
9秒前
酷波er应助zsy采纳,获得10
10秒前
11秒前
12秒前
烟花应助张云扬采纳,获得10
14秒前
研友_ndvmV8发布了新的文献求助10
15秒前
SiqiZhang完成签到,获得积分10
16秒前
852应助刘欢采纳,获得10
16秒前
柚子发布了新的文献求助10
16秒前
华彬心发布了新的文献求助10
17秒前
17秒前
充电宝应助jjjwln采纳,获得10
18秒前
19秒前
含糊的画板完成签到,获得积分10
19秒前
19秒前
Leo完成签到,获得积分10
19秒前
研友_ndvmV8完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547160
求助须知:如何正确求助?哪些是违规求助? 4632815
关于积分的说明 14628541
捐赠科研通 4574376
什么是DOI,文献DOI怎么找? 2508221
邀请新用户注册赠送积分活动 1484799
关于科研通互助平台的介绍 1455894