Learning a deep dual-level network for robust DeepFake detection

计算机科学 一般化 人工智能 机器学习 面子(社会学概念) 对偶(语法数字) 帧(网络) 强化学习 数学 数学分析 艺术 电信 社会科学 文学类 社会学
作者
Wenbo Pu,Jing Hu,Xin Wang,Yuezun Li,Shu Hu,Bin Zhu,Rui Song,Qi Song,Xi Wu,Siwei Lyu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:130: 108832-108832 被引量:28
标识
DOI:10.1016/j.patcog.2022.108832
摘要

Face manipulation techniques, especially DeepFake techniques, are causing severe social concerns and security problems. When faced with skewed data distributions such as those found in the real world, existing DeepFake detection methods exhibit significantly degraded performance, especially the AUC score. In this paper, we focus on DeepFake detection in real-world situations. We propose a dual-level collaborative framework to detect frame-level and video-level forgeries simultaneously with a joint loss function to optimize both the AUC score and error rate at the same time. Our experiments indicate that the AUC loss boosts imbalanced learning performance and outperforms focal loss, a state-of-the-art loss function to address imbalanced data. In addition, our multitask structure enables mutual reinforcement of frame-level and video-level detection and achieves outstanding performance in imbalanced learning. Our proposed method is also more robust to video quality variations and shows better generalization ability in cross-dataset evaluations than existing DeepFake detection methods. Our implementation is available online at https://github.com/PWB97/Deepfake-detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助活泼的觅云采纳,获得10
刚刚
动漫大师发布了新的文献求助10
1秒前
充电宝应助受伤冰菱采纳,获得30
2秒前
汉堡包应助封芷采纳,获得10
2秒前
冰魂应助老高采纳,获得10
3秒前
天天快乐应助7123采纳,获得10
3秒前
小萌完成签到,获得积分10
4秒前
陈一昂发布了新的文献求助10
4秒前
英俊的铭应助zxtwins采纳,获得10
6秒前
无限寄翠完成签到,获得积分10
6秒前
陈陈陈介意完成签到 ,获得积分10
8秒前
cdercder应助wise111采纳,获得10
9秒前
guozizi发布了新的文献求助30
9秒前
10秒前
着急的觅荷完成签到,获得积分10
11秒前
11秒前
lalala123完成签到,获得积分20
11秒前
11秒前
SciGPT应助研友_8QyXr8采纳,获得10
12秒前
13秒前
13秒前
13秒前
陈隆完成签到,获得积分10
14秒前
lwei发布了新的文献求助10
15秒前
OxO完成签到,获得积分10
15秒前
顾矜应助祯果粒采纳,获得10
16秒前
lalala123发布了新的文献求助10
16秒前
secret完成签到,获得积分10
17秒前
隐形曼青应助LSR采纳,获得10
18秒前
18秒前
19秒前
7123发布了新的文献求助10
19秒前
受伤冰菱发布了新的文献求助30
21秒前
路寻完成签到,获得积分10
21秒前
Hey发布了新的文献求助20
22秒前
从容芮应助陈一昂采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得10
23秒前
Akim应助科研通管家采纳,获得10
23秒前
思源应助科研通管家采纳,获得10
23秒前
田様应助科研通管家采纳,获得10
23秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799882
求助须知:如何正确求助?哪些是违规求助? 3345154
关于积分的说明 10324069
捐赠科研通 3061756
什么是DOI,文献DOI怎么找? 1680519
邀请新用户注册赠送积分活动 807129
科研通“疑难数据库(出版商)”最低求助积分说明 763462