AIR-Net: A novel multi-task learning method with auxiliary image reconstruction for predicting EGFR mutation status on CT images of NSCLC patients

计算机科学 编码器 人工智能 正规化(语言学) 突变 任务(项目管理) 深度学习 一致性(知识库) 机器学习 多任务学习 模式识别(心理学) 操作系统 经济 化学 管理 基因 生物化学
作者
Dongqi Gui,Qilong Song,Biao Song,Haichun Li,Minghui Wang,Xuhong Min,Ao Li
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:141: 105157-105157 被引量:11
标识
DOI:10.1016/j.compbiomed.2021.105157
摘要

Automated and accurate EGFR mutation status prediction using computed tomography (CT) imagery is of great value for tailoring optimal treatments to non-small cell lung cancer (NSCLC) patients. However, existing deep learning based methods usually adopt a single task learning strategy to design and train EGFR mutation status prediction models with limited training data, which may be insufficient to learn distinguishable representations for promoting prediction performance. In this paper, a novel multi-task learning method named AIR-Net is proposed to precisely predict EGFR mutation status on CT images. First, an auxiliary image reconstruction task is effectively integrated with EGFR mutation status prediction, aiming at providing extra supervision at the training phase. Particularly, we adequately employ multi-level information in a shared encoder to generate more comprehensive representations of tumors. Second, a powerful feature consistency loss is further introduced to constrain semantic consistency of original and reconstructed images, which contributes to enhanced image reconstruction and offers more effective regularization to AIR-Net during training. Performance analysis of AIR-Net indicates that auxiliary image reconstruction plays an essential role in identifying EGFR mutation status. Furthermore, extensive experimental results demonstrate that our method achieves favorable performance against other competitive prediction methods. All the results executed in this study suggest that the effectiveness and superiority of AIR-Net in precisely predicting EGFR mutation status of NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泡泡发布了新的文献求助10
刚刚
白昼流星完成签到,获得积分10
1秒前
科研老兵完成签到,获得积分10
1秒前
SaturnY完成签到,获得积分10
1秒前
2秒前
牛牛完成签到,获得积分10
2秒前
3秒前
3秒前
cnbhhhhh完成签到,获得积分10
3秒前
3秒前
小单王完成签到,获得积分10
3秒前
鸣笛应助liangzhy采纳,获得10
4秒前
怕黑的丝袜完成签到 ,获得积分10
4秒前
4秒前
5秒前
Yangyang完成签到,获得积分10
5秒前
无心的柠檬完成签到,获得积分10
5秒前
5秒前
时冬冬应助卓涵柏采纳,获得10
5秒前
6秒前
kirren完成签到,获得积分10
6秒前
Dillen发布了新的文献求助10
6秒前
温暖小松鼠完成签到 ,获得积分10
6秒前
7秒前
HMR完成签到 ,获得积分10
7秒前
111完成签到 ,获得积分10
7秒前
无奈世立发布了新的文献求助10
8秒前
开心的谷兰完成签到,获得积分10
8秒前
dayday发布了新的文献求助10
9秒前
希望天下0贩的0应助灯灯采纳,获得10
9秒前
HYH完成签到 ,获得积分10
9秒前
hah完成签到,获得积分10
9秒前
曾国强发布了新的文献求助10
10秒前
stuffmatter应助研友_LkY7BZ采纳,获得200
10秒前
10秒前
10秒前
七七完成签到,获得积分10
11秒前
11秒前
11秒前
Pie应助走着走着就散了采纳,获得10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Italian Feminism of Sexual Difference: A Different Ecofeminist Thought 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3934708
求助须知:如何正确求助?哪些是违规求助? 3480159
关于积分的说明 11007134
捐赠科研通 3209945
什么是DOI,文献DOI怎么找? 1774006
邀请新用户注册赠送积分活动 860660
科研通“疑难数据库(出版商)”最低求助积分说明 797817