Near infrared spectroscopy combined with chemometrics for quantitative analysis of corn oil in edible blend oil

化学计量学 五元 三元运算 大豆油 均方误差 残余油 植物油 变量消去 残余物 数学 材料科学 生物系统 统计 化学 色谱法 计算机科学 人工智能 算法 食品科学 程序设计语言 推论 有机化学 复合材料 合金 生物
作者
Huan Zhang,Xiao Hu,Limei Liu,Junfu Wei,Xihui Bian
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:270: 120841-120841 被引量:57
标识
DOI:10.1016/j.saa.2021.120841
摘要

In this study, near infrared (NIR) spectroscopy combined with chemometrics was used for the quantitative analysis of corn oil in binary to hexanary edible blend oil. Sesame oil, soybean oil, rice oil, sunflower oil and peanut oil were mixed with corn oil subsequently to form binary, ternary, quaternary, quinary and hexanary blend oil datasets. NIR spectra for the five order blend oil datasets were measured in a transmittance mode in the range of 12000-4000 cm-1. Partial least square (PLS) was used to build models for the five datasets. Six spectral preprocessing methods and their combinations were investigated to improve the prediction performance. Furthermore, the optimal preprocessing-PLS models were further optimized by uninformative variable elimination (UVE), Monte Carlo uninformative variable elimination (MCUVE) and randomization test (RT) variable selection methods. The optimal models acquire root mean square error of prediction (RMSEP) of 1.7299, 2.2089, 2.3742, 2.5608 and 2.6858 for binary, ternary, quaternary, quinary and hexanary blend oil datasets, respectively. The determination coefficients of prediction set (R2P) and residual predictive deviations (RPDs) for the five datasets are all above 0.93 and 3. Results show that the prediction accuracy is gradually decreased with the increasing of mixture order of blend oil. However, with proper spectral preprocessing and variable selection, the optimal models present good prediction accuracy even for the higher order blend oil. It demonstrates that NIR technology is feasible for determining the pure oil contents in binary to hexanary blend oil.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助端庄毛巾采纳,获得10
刚刚
汤圆圆儿发布了新的文献求助10
刚刚
1秒前
1秒前
rm发布了新的文献求助10
1秒前
科研通AI2S应助东东东采纳,获得10
4秒前
4秒前
刘晓玉关注了科研通微信公众号
4秒前
风不言喻发布了新的文献求助10
6秒前
琪琪完成签到,获得积分10
6秒前
感动香薇发布了新的文献求助10
7秒前
李爱国应助yuan采纳,获得10
8秒前
iY发布了新的文献求助10
8秒前
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
潘挞Q完成签到 ,获得积分10
12秒前
Cheryy发布了新的文献求助10
13秒前
15秒前
Isaac完成签到,获得积分10
16秒前
陈zzzz完成签到,获得积分10
17秒前
研友_VZG7GZ应助小鹅采纳,获得10
17秒前
CharlotteBlue完成签到,获得积分0
17秒前
ljx发布了新的文献求助10
18秒前
丘比特应助橙橙采纳,获得10
19秒前
刘晓玉发布了新的文献求助10
21秒前
小蘑菇应助mft1989mft采纳,获得10
22秒前
bfr完成签到,获得积分10
23秒前
26秒前
一木完成签到,获得积分10
27秒前
27秒前
28秒前
量子星尘发布了新的文献求助10
29秒前
端庄毛巾发布了新的文献求助10
29秒前
zhugao完成签到,获得积分10
30秒前
30秒前
xiaojin发布了新的文献求助10
32秒前
celinewu发布了新的文献求助10
32秒前
科研通AI5应助guan采纳,获得10
33秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867122
求助须知:如何正确求助?哪些是违规求助? 3409364
关于积分的说明 10663267
捐赠科研通 3133502
什么是DOI,文献DOI怎么找? 1728248
邀请新用户注册赠送积分活动 832879
科研通“疑难数据库(出版商)”最低求助积分说明 780510