Histopathology-Based Diagnosis of Oral Squamous Cell Carcinoma Using Deep Learning

组织病理学 医学 基底细胞 工作量 活检 预测值 放射科 人工智能 病理 内科学 计算机科学 操作系统
作者
Seon Yang,Shihao Li,Jialing Liu,Xiuhui Sun,Yueyan Cen,Ruiyang Ren,Sancong Ying,Y Chen,Zhihe Zhao,Wen Liao
出处
期刊:Journal of Dental Research [SAGE Publishing]
卷期号:101 (11): 1321-1327 被引量:36
标识
DOI:10.1177/00220345221089858
摘要

Oral squamous cell carcinoma (OSCC) is prevalent around the world and is associated with poor prognosis. OSCC is typically diagnosed from tissue biopsy sections by pathologists who rely on their empirical experience. Deep learning models may improve the accuracy and speed of image classification, thus reducing human error and workload. Here we developed a custom-made deep learning model to assist pathologists in detecting OSCC from histopathology images. We collected and analyzed a total of 2,025 images, among which 1,925 images were included in the training set and 100 images were included in the testing set. Our model was able to automatically evaluate these images and arrive at a diagnosis with a sensitivity of 0.98, specificity of 0.92, positive predictive value of 0.924, negative predictive value of 0.978, and F1 score of 0.951. Using a subset of 100 images, we examined whether our model could improve the diagnostic performance of junior and senior pathologists. We found that junior pathologists were able to delineate OSCC in these images 6.26 min faster when assisted by the model than when working alone. When the clinicians were assisted by the model, their average F1 score improved from 0.9221 to 0.9566 in the case of junior pathologists and from 0.9361 to 0.9463 in the case of senior pathologists. Our findings indicate that deep learning can improve the accuracy and speed of OSCC diagnosis from histopathology images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耍酷奎发布了新的文献求助10
刚刚
CipherSage应助阿言采纳,获得30
1秒前
赘婿应助快乐的心情采纳,获得10
2秒前
2秒前
2秒前
全栾发布了新的文献求助10
3秒前
冯万强给冯万强的求助进行了留言
3秒前
FLZLC完成签到,获得积分10
3秒前
4秒前
4秒前
知北完成签到,获得积分10
4秒前
小二郎应助Angie_qian采纳,获得30
4秒前
4秒前
Owen应助青青采纳,获得10
4秒前
白桃枝完成签到,获得积分10
4秒前
5秒前
123完成签到,获得积分10
5秒前
5秒前
nong12123发布了新的文献求助20
6秒前
Metoprolol发布了新的文献求助10
7秒前
谦让灵煌发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
白123发布了新的文献求助10
9秒前
9秒前
咂咂完成签到,获得积分10
11秒前
是木易呀应助wwe采纳,获得10
11秒前
12秒前
小二郎应助hsp采纳,获得10
12秒前
erhao完成签到,获得积分10
12秒前
12秒前
迷你的百川完成签到,获得积分10
12秒前
12秒前
12秒前
可爱的函函应助梨子采纳,获得10
12秒前
Akim应助小巧的铅笔采纳,获得10
14秒前
科研通AI6应助A001采纳,获得10
14秒前
科研通AI5应助谦让灵煌采纳,获得10
14秒前
14秒前
erhao发布了新的文献求助10
15秒前
落寞小熊猫完成签到,获得积分10
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4237653
求助须知:如何正确求助?哪些是违规求助? 3771665
关于积分的说明 11845462
捐赠科研通 3427794
什么是DOI,文献DOI怎么找? 1881195
邀请新用户注册赠送积分活动 933570
科研通“疑难数据库(出版商)”最低求助积分说明 840491