Histopathology-Based Diagnosis of Oral Squamous Cell Carcinoma Using Deep Learning

组织病理学 医学 基底细胞 工作量 活检 预测值 放射科 人工智能 病理 内科学 计算机科学 操作系统
作者
Seon Yang,Shihao Li,Jialing Liu,Xiuhui Sun,Yueyan Cen,Ruiyang Ren,Sancong Ying,Y Chen,Zhihe Zhao,Wen Liao
出处
期刊:Journal of Dental Research [SAGE Publishing]
卷期号:101 (11): 1321-1327 被引量:34
标识
DOI:10.1177/00220345221089858
摘要

Oral squamous cell carcinoma (OSCC) is prevalent around the world and is associated with poor prognosis. OSCC is typically diagnosed from tissue biopsy sections by pathologists who rely on their empirical experience. Deep learning models may improve the accuracy and speed of image classification, thus reducing human error and workload. Here we developed a custom-made deep learning model to assist pathologists in detecting OSCC from histopathology images. We collected and analyzed a total of 2,025 images, among which 1,925 images were included in the training set and 100 images were included in the testing set. Our model was able to automatically evaluate these images and arrive at a diagnosis with a sensitivity of 0.98, specificity of 0.92, positive predictive value of 0.924, negative predictive value of 0.978, and F1 score of 0.951. Using a subset of 100 images, we examined whether our model could improve the diagnostic performance of junior and senior pathologists. We found that junior pathologists were able to delineate OSCC in these images 6.26 min faster when assisted by the model than when working alone. When the clinicians were assisted by the model, their average F1 score improved from 0.9221 to 0.9566 in the case of junior pathologists and from 0.9361 to 0.9463 in the case of senior pathologists. Our findings indicate that deep learning can improve the accuracy and speed of OSCC diagnosis from histopathology images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助科研强采纳,获得10
2秒前
2秒前
CodeCraft应助100采纳,获得10
3秒前
帕芙芙完成签到,获得积分10
5秒前
6秒前
9秒前
Steven发布了新的文献求助10
11秒前
11秒前
栾欣发布了新的文献求助10
12秒前
晓柳柳发布了新的文献求助10
15秒前
共享精神应助help采纳,获得10
16秒前
阿浮完成签到,获得积分10
22秒前
puuming完成签到,获得积分10
23秒前
英俊铸海完成签到,获得积分10
26秒前
27秒前
晓柳柳完成签到,获得积分10
27秒前
雨纷纷完成签到,获得积分10
29秒前
help发布了新的文献求助10
32秒前
kdjm688发布了新的文献求助10
36秒前
快乐的寄容完成签到 ,获得积分10
37秒前
房山芙完成签到,获得积分10
41秒前
搞怪白猫完成签到,获得积分20
45秒前
真实的亦竹完成签到,获得积分10
45秒前
典雅雨寒完成签到,获得积分10
46秒前
Lucas应助HL采纳,获得10
46秒前
搞怪白猫发布了新的文献求助30
52秒前
呆萌的语芹完成签到,获得积分10
52秒前
踏实的静竹完成签到,获得积分10
52秒前
52秒前
53秒前
Fiee完成签到 ,获得积分10
56秒前
英俊铸海关注了科研通微信公众号
57秒前
灰太狼大王完成签到 ,获得积分10
57秒前
58秒前
100发布了新的文献求助10
1分钟前
1分钟前
李白白白完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI5应助shihan1231采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777414
求助须知:如何正确求助?哪些是违规求助? 3322767
关于积分的说明 10211585
捐赠科研通 3038128
什么是DOI,文献DOI怎么找? 1667131
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103