An imputation approach using subdistribution weights for deep survival analysis with competing events

计算机科学 预处理器 审查(临床试验) 子网 事件(粒子物理) 人工智能 数据挖掘 生存分析 插补(统计学) 比例危险模型 机器学习 统计 缺少数据 数学 物理 计算机安全 量子力学
作者
Shekoufeh Gorgi Zadeh,Charlotte Behning,Matthias Schmid
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:12 (1) 被引量:1
标识
DOI:10.1038/s41598-022-07828-7
摘要

Abstract With the popularity of deep neural networks (DNNs) in recent years, many researchers have proposed DNNs for the analysis of survival data (time-to-event data). These networks learn the distribution of survival times directly from the predictor variables without making strong assumptions on the underlying stochastic process. In survival analysis, it is common to observe several types of events, also called competing events. The occurrences of these competing events are usually not independent of one another and have to be incorporated in the modeling process in addition to censoring. In classical survival analysis, a popular method to incorporate competing events is the subdistribution hazard model, which is usually fitted using weighted Cox regression. In the DNN framework, only few architectures have been proposed to model the distribution of time to a specific event in a competing events situation. These architectures are characterized by a separate subnetwork/pathway per event, leading to large networks with huge amounts of parameters that may become difficult to train. In this work, we propose a novel imputation strategy for data preprocessing that incorporates weights derived from a time-discrete version of the classical subdistribution hazard model. With this, it is no longer necessary to add multiple subnetworks to the DNN to handle competing events. Our experiments on synthetic and real-world datasets show that DNNs with multiple subnetworks per event can simply be replaced by a DNN designed for a single-event analysis without loss in accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小王关注了科研通微信公众号
2秒前
文静的如娆完成签到,获得积分10
2秒前
香蕉觅云应助追三采纳,获得10
5秒前
书记发布了新的文献求助10
5秒前
贪玩的成危完成签到 ,获得积分10
6秒前
飘着的鬼完成签到 ,获得积分10
7秒前
michen发布了新的文献求助10
7秒前
8秒前
littleE发布了新的文献求助20
11秒前
12秒前
未来的幻想完成签到,获得积分10
12秒前
12秒前
ardejiang发布了新的文献求助10
16秒前
16秒前
CR7应助科研通管家采纳,获得20
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
CR7应助科研通管家采纳,获得20
16秒前
元谷雪应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
江峰应助科研通管家采纳,获得10
16秒前
今后应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
江峰应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
17秒前
CAOHOU应助科研通管家采纳,获得10
17秒前
HarryChan应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得10
17秒前
江峰应助科研通管家采纳,获得10
17秒前
CR7应助科研通管家采纳,获得20
17秒前
元谷雪应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得30
17秒前
SYLH应助科研通管家采纳,获得10
17秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4046142
求助须知:如何正确求助?哪些是违规求助? 3583869
关于积分的说明 11390815
捐赠科研通 3311163
什么是DOI,文献DOI怎么找? 1822153
邀请新用户注册赠送积分活动 894354
科研通“疑难数据库(出版商)”最低求助积分说明 816171