A combined data-driven, experimental and modelling approach for assessing the optimal composition of impregnation products for cementitious materials

胶凝的 渗透(战争) 材料科学 参数统计 穿透深度 概率逻辑 实验设计 高斯分布 水泥 计算机科学 工艺工程 复合材料 生物系统 数学 工程类 统计 光学 化学 人工智能 计算化学 物理 生物 运筹学
作者
Janez Perko,Eric Laloy,Rafael Zarzuela,Ivo Couckuyt,Ramiro Garcia Navarro,María J. Mosquera
出处
期刊:Cement & Concrete Composites [Elsevier]
卷期号:136: 104903-104903 被引量:8
标识
DOI:10.1016/j.cemconcomp.2022.104903
摘要

The effectiveness of sol-gel based treatments for the protection of concrete depends on their capacity to penetrate into the material pores. Optimization of sol formulation to achieve maximum penetration depth is not a straightforward process, as the influence of different physical properties of the sol varies with the pore size distribution of each concrete. Thus, a comprehensive experimental programme to evaluate this large number of materials would require a significant number of experiments. This manuscript describes an approach, using combined computational and experimental approach to design tailor-made impregnation products with optimized penetration depth on concrete or cementitious materials with different pore size distributions. First, a process-based numerical model, calibrated experimentally for one sol composition and several cementitious material samples with different pore structures is developed. The model calculates the penetration depth for a specific pore structure. The optimization process utilizes the probabilistic and non-parametric Gaussian Processes regression method Gaussian Processes at two steps; first to make the choice of the optimal experimental design, and second to make predictions of physical properties based on the obtained training points. In the final step, the penetration depth is calculated for each mix combination in defined parameter range. The effectiveness of this approach is demonstrated on three cases. In the first instance, we optimized the impregnation product for the maximum penetration depth without any restrictions. With another two cases, we impose the restrictions on the gelation time, i.e. the time in which the sol reacts to gel. The validation of the procedure has been made by the use of a blind validation and shows promising results. The impregnation product penetrated significantly deeper with a product selected by using the described procedure compared to the considered best product before this optimization. The proposed procedure can be applied to a wide range of cementitious materials based on their pore size distribution data. This offers significant advantage compared to purely experimental approaches, where a set of experiments is required for each considered material.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李笑完成签到,获得积分10
刚刚
刚刚
小菊完成签到,获得积分10
刚刚
刚刚
充电宝应助flyingpig采纳,获得10
1秒前
顾矜应助翟函采纳,获得10
3秒前
LIU发布了新的文献求助10
4秒前
迷路初兰发布了新的文献求助10
5秒前
qxy完成签到 ,获得积分10
5秒前
7秒前
7秒前
高大的彤完成签到,获得积分10
7秒前
一只半夏完成签到,获得积分10
8秒前
8秒前
浮游应助村上春树的摩的采纳,获得10
9秒前
9秒前
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得15
10秒前
zzdd应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
浮游应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
11秒前
浮游应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
积极的Fang发布了新的文献求助10
11秒前
zzdd应助科研通管家采纳,获得10
11秒前
ldh应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得30
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
11秒前
zzdd应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532789
求助须知:如何正确求助?哪些是违规求助? 4621444
关于积分的说明 14578210
捐赠科研通 4561414
什么是DOI,文献DOI怎么找? 2499282
邀请新用户注册赠送积分活动 1479215
关于科研通互助平台的介绍 1450443