清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Quantification method of tubing defects based on machine learning algorithm and magnetic flux leakage signals

漏磁 材料科学 修井 井口 粒子群优化 均方误差 模拟退火 无损检测 算法 计算机科学 机械工程 工程类 数学 放射科 统计 医学 磁铁
作者
Mingjiang Shi,Mao Ni,Liansheng Qin,Yanbing Liang,Zhiqiang Huang
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:94 (1) 被引量:5
标识
DOI:10.1063/5.0122436
摘要

Tubing is the pipeline that transports crude oil and natural gas from the oil and gas layer to the surface of the earth. Due to the harsh operating environment, the tubing will suffer from etch pits, scratches, cracks, perforations, and even direct fractures of different degrees of defective conditions. If tubing defects are not detected and quantified in a timely manner, the continued use of tubing will result in tubing leakage and failure. Magnetic flux leakage (MFL) testing as a nondestructive testing method enables the identification and quantitative analysis of defects in metal tubing. To improve the quantification accuracy of defects in the wellhead MFL testing of tubing defects during workover operations, this paper proposes a multi-output least-squares support vector regression machine (MLSSVR) model optimized based on the simulated annealing algorithm. The size of tubing defects can be quantified by establishing the mapping between the characteristic quantity of MFL signals and the defect size. The experimental results of MFL testing of tubing defects show that the root mean square error (RMSE) of the diameter of tubing defects of the simulated annealing algorithm optimized multi-output least-squares support vector regression (SA-MLSSVR) machine model proposed in this paper is 0.4562 mm, and the RMSE of the depth of tubing defects is 0.1504 mm. Compared with the non-optimized MLSSVR model, the overall RMSE of tubing defects is reduced by 36.48%. The SA-MLSSVR model only needs one-ninth of the time to achieve the same quantification accuracy as the particle swarm optimized multi-output least-squares support vector regression machine model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
John完成签到 ,获得积分10
14秒前
19秒前
22秒前
wmuzhao发布了新的文献求助10
22秒前
天天快乐应助JJ采纳,获得10
34秒前
Leofar完成签到 ,获得积分10
36秒前
38秒前
42秒前
JJ完成签到,获得积分10
43秒前
香蕉觅云应助wmuzhao采纳,获得10
45秒前
JJ发布了新的文献求助10
46秒前
顺利问玉完成签到 ,获得积分10
47秒前
49秒前
麦麦完成签到,获得积分10
51秒前
江江完成签到,获得积分10
51秒前
量子星尘发布了新的文献求助30
1分钟前
k001boyxw完成签到,获得积分10
1分钟前
1分钟前
wmuzhao发布了新的文献求助10
1分钟前
一苇以航完成签到 ,获得积分10
1分钟前
1分钟前
Decade2021完成签到,获得积分10
1分钟前
FashionBoy应助斯文的友菱采纳,获得10
1分钟前
852应助wmuzhao采纳,获得10
1分钟前
1分钟前
1分钟前
下午好完成签到 ,获得积分10
2分钟前
2分钟前
liu完成签到 ,获得积分10
2分钟前
沙海沉戈完成签到,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
刘刘完成签到 ,获得积分10
2分钟前
时尚丹寒完成签到 ,获得积分10
3分钟前
大轩完成签到 ,获得积分10
3分钟前
聪明的大树完成签到,获得积分10
3分钟前
3分钟前
深情安青应助科研通管家采纳,获得20
3分钟前
大个应助快乐的惜儿采纳,获得10
3分钟前
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008493
求助须知:如何正确求助?哪些是违规求助? 3548198
关于积分的说明 11298711
捐赠科研通 3282912
什么是DOI,文献DOI怎么找? 1810274
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811209