已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quantification method of tubing defects based on machine learning algorithm and magnetic flux leakage signals

漏磁 材料科学 修井 井口 粒子群优化 均方误差 模拟退火 无损检测 算法 计算机科学 机械工程 工程类 数学 放射科 统计 医学 磁铁
作者
Mingjiang Shi,Mao Ni,Liansheng Qin,Yanbing Liang,Zhiqiang Huang
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:94 (1) 被引量:5
标识
DOI:10.1063/5.0122436
摘要

Tubing is the pipeline that transports crude oil and natural gas from the oil and gas layer to the surface of the earth. Due to the harsh operating environment, the tubing will suffer from etch pits, scratches, cracks, perforations, and even direct fractures of different degrees of defective conditions. If tubing defects are not detected and quantified in a timely manner, the continued use of tubing will result in tubing leakage and failure. Magnetic flux leakage (MFL) testing as a nondestructive testing method enables the identification and quantitative analysis of defects in metal tubing. To improve the quantification accuracy of defects in the wellhead MFL testing of tubing defects during workover operations, this paper proposes a multi-output least-squares support vector regression machine (MLSSVR) model optimized based on the simulated annealing algorithm. The size of tubing defects can be quantified by establishing the mapping between the characteristic quantity of MFL signals and the defect size. The experimental results of MFL testing of tubing defects show that the root mean square error (RMSE) of the diameter of tubing defects of the simulated annealing algorithm optimized multi-output least-squares support vector regression (SA-MLSSVR) machine model proposed in this paper is 0.4562 mm, and the RMSE of the depth of tubing defects is 0.1504 mm. Compared with the non-optimized MLSSVR model, the overall RMSE of tubing defects is reduced by 36.48%. The SA-MLSSVR model only needs one-ninth of the time to achieve the same quantification accuracy as the particle swarm optimized multi-output least-squares support vector regression machine model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yangyang完成签到,获得积分10
2秒前
秋秋完成签到,获得积分10
2秒前
Salman完成签到 ,获得积分10
2秒前
3秒前
墨海完成签到 ,获得积分10
4秒前
饿哭了塞完成签到 ,获得积分10
5秒前
numagok完成签到,获得积分10
6秒前
隔壁巷子里的劉完成签到 ,获得积分10
6秒前
7秒前
7秒前
李顺利完成签到 ,获得积分10
8秒前
莫奈发布了新的文献求助30
8秒前
丘比特应助张不大采纳,获得10
8秒前
捏个小雪团完成签到 ,获得积分10
11秒前
英姑应助小白菜采纳,获得10
12秒前
尚尚尚发布了新的文献求助10
13秒前
严明完成签到,获得积分0
15秒前
严明完成签到,获得积分0
16秒前
义气幼珊完成签到 ,获得积分10
17秒前
小二郎应助尚尚尚采纳,获得10
20秒前
cyj完成签到 ,获得积分10
20秒前
20秒前
dawnstar完成签到 ,获得积分10
21秒前
yingying完成签到 ,获得积分10
21秒前
zbr完成签到 ,获得积分10
24秒前
情怀应助科研通管家采纳,获得10
24秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
Jasper应助兵临城下采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
Orange应助科研通管家采纳,获得10
24秒前
1111完成签到,获得积分10
24秒前
haodian完成签到 ,获得积分10
25秒前
清爽的机器猫完成签到 ,获得积分10
25秒前
大海完成签到,获得积分10
26秒前
桐桐应助莫奈采纳,获得20
32秒前
XXX完成签到,获得积分10
33秒前
grace完成签到 ,获得积分20
33秒前
adam完成签到 ,获得积分10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422298
求助须知:如何正确求助?哪些是违规求助? 4537270
关于积分的说明 14156652
捐赠科研通 4453792
什么是DOI,文献DOI怎么找? 2443067
邀请新用户注册赠送积分活动 1434451
关于科研通互助平台的介绍 1411499