Spectral–Spatial Masked Transformer With Supervised and Contrastive Learning for Hyperspectral Image Classification

模式识别(心理学) 人工智能 高光谱成像 计算机科学 判别式 变压器 分类器(UML) 电压 量子力学 物理
作者
Lingbo Huang,Yushi Chen,Xin He
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:38
标识
DOI:10.1109/tgrs.2023.3264235
摘要

Recently, due to the powerful capability at modeling the long-range relationships, Transformer-based methods have been widely explored in many research areas including hyperspectral image (HSI) classification. However, because of lots of trainable parameters and the lack of inductive bias, it is difficult to train a Transformer-based HSI classifier, especially when the number of training samples is limited. To address this issue, in this study, spectral-spatial masked Transformer (SS-MTr) is explored for HSI classification, which uses a two-stage training strategy. In the first stage, SS-MTr pre-trains a vanilla Transformer via reconstruction from masked HSI inputs, which embeds the local inductive bias into the Transformer. In the second stage, the well pre-trained Transformer is cooperated with a fully connected layer and then fine-tuned for the HSI classification. Furthermore, in order to incorporate discriminative feature learning into the SS-MTr, three SS-MTr-based methods, including contrastive SS-MTr (C-SS-MTr), supervised SS-MTr (S-SS-MTr), and supervised contrastive SS-MTr (SC-SS-MTr) are proposed by adding extra branches for specific tasks in parallel with the existing reconstruction task. Specifically, the proposed C-SS-MTr adds a contrastive loss which brings instance discriminability. Besides, the proposed S-SS-MTr builds an extra classification branch for embracing inter-class discriminability and intra-class similarity. Moreover, the proposed SC-SS-MTr combines C-SS-MTr and S-SS-MTr for better generalization. The proposed SS-MTr, C-SS-MTr, S-SS-MTr, and SC-SS-MTr are tested on three popular hyperspectral datasets (i.e., Indian Pines, Pavia University, and Houston). The obtained results reveal that the proposed models achieve competitive results compared with the state-of-the-art HSI classification methods. Code is available at https://github.com/mengduanjinghua/SS-MTr.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
牛奶好难喝完成签到 ,获得积分10
1秒前
我不叫蔚发布了新的文献求助10
1秒前
火星上小凡完成签到,获得积分10
2秒前
書生应助一袋薯片采纳,获得10
2秒前
无别事完成签到 ,获得积分20
2秒前
啦啦啦啦完成签到 ,获得积分10
3秒前
lucky完成签到 ,获得积分10
3秒前
4秒前
aaa发布了新的文献求助10
4秒前
jxzhou完成签到,获得积分10
4秒前
batmanrobin完成签到,获得积分10
6秒前
Voloid完成签到,获得积分10
6秒前
7秒前
hht发布了新的文献求助10
8秒前
wsyiming完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
10秒前
CipherSage应助lzb采纳,获得10
10秒前
佐zzz完成签到 ,获得积分10
11秒前
哈基米德应助joleisalau采纳,获得20
12秒前
奕青完成签到,获得积分10
12秒前
深情安青应助old陈采纳,获得10
13秒前
然后先生发布了新的文献求助10
14秒前
14秒前
15秒前
杂鱼完成签到,获得积分10
15秒前
humble完成签到 ,获得积分10
15秒前
16秒前
小马甲应助Nancy采纳,获得10
16秒前
17秒前
牛奶好难喝关注了科研通微信公众号
17秒前
神经娃发布了新的文献求助10
19秒前
调皮语堂完成签到,获得积分10
19秒前
chx2256120完成签到,获得积分10
19秒前
19秒前
Yasmine完成签到 ,获得积分10
20秒前
Haoea发布了新的文献求助30
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339456
求助须知:如何正确求助?哪些是违规求助? 4476253
关于积分的说明 13930947
捐赠科研通 4371718
什么是DOI,文献DOI怎么找? 2402066
邀请新用户注册赠送积分活动 1395009
关于科研通互助平台的介绍 1366964