Spectral–Spatial Masked Transformer With Supervised and Contrastive Learning for Hyperspectral Image Classification

模式识别(心理学) 人工智能 高光谱成像 计算机科学 判别式 变压器 分类器(UML) 电压 量子力学 物理
作者
Lingbo Huang,Yushi Chen,Xin He
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:38
标识
DOI:10.1109/tgrs.2023.3264235
摘要

Recently, due to the powerful capability at modeling the long-range relationships, Transformer-based methods have been widely explored in many research areas including hyperspectral image (HSI) classification. However, because of lots of trainable parameters and the lack of inductive bias, it is difficult to train a Transformer-based HSI classifier, especially when the number of training samples is limited. To address this issue, in this study, spectral-spatial masked Transformer (SS-MTr) is explored for HSI classification, which uses a two-stage training strategy. In the first stage, SS-MTr pre-trains a vanilla Transformer via reconstruction from masked HSI inputs, which embeds the local inductive bias into the Transformer. In the second stage, the well pre-trained Transformer is cooperated with a fully connected layer and then fine-tuned for the HSI classification. Furthermore, in order to incorporate discriminative feature learning into the SS-MTr, three SS-MTr-based methods, including contrastive SS-MTr (C-SS-MTr), supervised SS-MTr (S-SS-MTr), and supervised contrastive SS-MTr (SC-SS-MTr) are proposed by adding extra branches for specific tasks in parallel with the existing reconstruction task. Specifically, the proposed C-SS-MTr adds a contrastive loss which brings instance discriminability. Besides, the proposed S-SS-MTr builds an extra classification branch for embracing inter-class discriminability and intra-class similarity. Moreover, the proposed SC-SS-MTr combines C-SS-MTr and S-SS-MTr for better generalization. The proposed SS-MTr, C-SS-MTr, S-SS-MTr, and SC-SS-MTr are tested on three popular hyperspectral datasets (i.e., Indian Pines, Pavia University, and Houston). The obtained results reveal that the proposed models achieve competitive results compared with the state-of-the-art HSI classification methods. Code is available at https://github.com/mengduanjinghua/SS-MTr.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
翻斗花园612完成签到,获得积分10
3秒前
桐桐应助cst采纳,获得10
4秒前
5秒前
科研通AI5应助杠十四采纳,获得10
6秒前
马鲛发布了新的文献求助10
10秒前
开朗的沛山完成签到,获得积分10
16秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
21秒前
小柒完成签到 ,获得积分10
23秒前
马鲛完成签到,获得积分10
25秒前
yao发布了新的文献求助10
25秒前
27秒前
伊叶之丘完成签到 ,获得积分10
27秒前
听风完成签到,获得积分10
30秒前
bbll完成签到,获得积分10
30秒前
bqss发布了新的文献求助10
33秒前
33秒前
33秒前
钠钾蹦发布了新的文献求助10
37秒前
SciGPT应助钠钾蹦采纳,获得10
44秒前
46秒前
ycccccc完成签到 ,获得积分10
47秒前
zhangzheng发布了新的文献求助10
47秒前
默默灭绝完成签到 ,获得积分10
48秒前
小全发布了新的文献求助10
50秒前
阡陌完成签到,获得积分10
50秒前
精英刺客发布了新的文献求助10
51秒前
lili完成签到 ,获得积分10
53秒前
jichups完成签到,获得积分10
56秒前
57秒前
Lucas应助巴拉巴拉巴拉拉采纳,获得10
59秒前
cst发布了新的文献求助10
1分钟前
Yu完成签到,获得积分10
1分钟前
华仔应助乐观井采纳,获得10
1分钟前
大个应助可可采纳,获得10
1分钟前
1分钟前
华仔应助朗源Wu采纳,获得10
1分钟前
meixinhu发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779725
求助须知:如何正确求助?哪些是违规求助? 3325161
关于积分的说明 10221707
捐赠科研通 3040293
什么是DOI,文献DOI怎么找? 1668715
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758535