已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SepsisCalc: Integrating Clinical Calculators into Early Sepsis Prediction via Dynamic Temporal Graph Construction

计算机科学 图形 理论计算机科学
作者
Changchang Yin,Shihan Fu,Bingsheng Yao,Thai-Hoang Pham,Weidan Cao,Dakuo Wang,Jeffrey M. Caterino,Ping Zhang
标识
DOI:10.1145/3690624.3709402
摘要

Sepsis is an organ dysfunction caused by a deregulated immune response to an infection. Early sepsis prediction and identification allow for timely intervention, leading to improved clinical outcomes. Clinical calculators (e.g., the six-organ dysfunction assessment of SOFA in Figure 1) play a vital role in sepsis identification within clinicians' workflow, providing evidence-based risk assessments essential for sepsis diagnosis. However, artificial intelligence (AI) sepsis prediction models typically generate a single sepsis risk score without incorporating clinical calculators for assessing organ dysfunctions, making the models less convincing and transparent to clinicians. To bridge the gap, we propose to mimic clinicians' workflow with a novel framework SepsisCalc to integrate clinical calculators into the predictive model, yielding a clinically transparent and precise model for utilization in clinical settings. Practically, clinical calculators usually combine information from multiple component variables in Electronic Health Records (EHR), and might not be applicable when the variables are (partially) missing. We mitigate this issue by representing EHRs as temporal graphs and integrating a learning module to dynamically add the accurately estimated calculator to the graphs. Experimental results on real-world datasets show that the proposed model outperforms state-of-the-art methods on sepsis prediction tasks. Moreover, we developed a system to identify organ dysfunctions and potential sepsis risks, providing a human-AI interaction tool for deployment, which can help clinicians understand the prediction outputs and prepare timely interventions for the corresponding dysfunctions, paving the way for actionable clinical decision-making support for early intervention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oneworld完成签到,获得积分10
刚刚
安静的从安完成签到,获得积分10
刚刚
镁铝硅磷发布了新的文献求助10
1秒前
123123完成签到 ,获得积分20
2秒前
3秒前
SYanan完成签到 ,获得积分10
4秒前
5秒前
张无缺完成签到,获得积分10
5秒前
oneworld发布了新的文献求助20
8秒前
NexusExplorer应助张无缺采纳,获得30
9秒前
srswy发布了新的文献求助10
10秒前
兰乖乖发布了新的文献求助20
10秒前
震动的如柏关注了科研通微信公众号
11秒前
123完成签到 ,获得积分10
12秒前
12秒前
12秒前
13秒前
abc完成签到 ,获得积分10
15秒前
香锅不要辣完成签到 ,获得积分10
15秒前
ncvog发布了新的文献求助10
18秒前
江姜发布了新的文献求助10
18秒前
动人的书雪完成签到,获得积分10
20秒前
淡定的思松完成签到 ,获得积分10
20秒前
ding应助srswy采纳,获得10
22秒前
22秒前
chenwuhao完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
25秒前
听闻墨笙完成签到 ,获得积分10
25秒前
DJHKFD发布了新的文献求助10
26秒前
sisibiqi发布了新的文献求助30
27秒前
Hello应助营养都在汤里采纳,获得10
28秒前
时尚的冰棍儿完成签到 ,获得积分10
28秒前
西门浩宇完成签到 ,获得积分10
30秒前
30秒前
31秒前
山复尔尔完成签到 ,获得积分10
32秒前
加油杨完成签到 ,获得积分10
33秒前
不甜完成签到 ,获得积分10
34秒前
zbx完成签到,获得积分10
34秒前
only发布了新的文献求助10
34秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885659
求助须知:如何正确求助?哪些是违规求助? 3427784
关于积分的说明 10756786
捐赠科研通 3152675
什么是DOI,文献DOI怎么找? 1740522
邀请新用户注册赠送积分活动 840252
科研通“疑难数据库(出版商)”最低求助积分说明 785254