Food Freshness Prediction Platform Utilizing Deep Learning-Based Multimodal Sensor Fusion of Volatile Organic Compounds and Moisture Distribution

深度学习 计算机科学 保险丝(电气) 人工智能 光学(聚焦) 融合 传感器融合 过程(计算) 食物腐败 模式识别(心理学) 水分 工艺工程 计算机数据存储 机器学习 环境科学 遥感 数据建模 生物系统 管道运输 数据挖掘 还原(数学)
作者
Zepeng Gu,Qinyan Xu,Xiaoyao Wang,Xianfeng Lin,Nuo Duan,Zhouping Wang,Shijia Wu
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:10 (4): 3091-3100 被引量:7
标识
DOI:10.1021/acssensors.5c00254
摘要

Various sensing methods have been developed for food spoilage research, but in practical applications, the accuracy of these methods is frequently constrained by the limitation of single-source data and challenges in cross-validating multimodal data. To address these issues, a new method combining multidimensional sensing technology with deep learning-based dynamic fusion has been developed, which can precisely monitor the spoilage process of beef. This study designs a gas sensor based on surface-enhanced Raman scattering (SERS) to directly analyze volatile organic compounds (VOCs) adsorbed on MIL-101(Cr) with amine-specific adsorption for data collection while also evaluating the moisture distribution of beef through low-field nuclear magnetic resonance (LF-NMR), providing multidimensional recognition and readings. By introducing the self-attention mechanism and SENet scaling features into the multimodal deep learning model, the system is able to adaptively fuse and focus on the important features of the sensors. After training, the system can predict the storage time of beef under controlled storage conditions, with an R2 value greater than 0.98. Furthermore, it can provide accurate freshness assessments for beef samples under unknown storage conditions. Relative to single-modality methods, accuracy improves from 90 to over 97%. Overall, the newly developed dynamic fusion deep learning multimodal model effectively integrates multimodal information, enabling the fast and reliable monitoring of beef freshness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yuson_L发布了新的文献求助10
1秒前
1秒前
WANG关注了科研通微信公众号
2秒前
2秒前
3秒前
4秒前
楚楚爸完成签到,获得积分10
4秒前
4秒前
镁铝硅磷完成签到,获得积分10
5秒前
有魅力的澜完成签到,获得积分10
5秒前
Pengzhuhuai发布了新的文献求助10
5秒前
6秒前
沉默天宇关注了科研通微信公众号
6秒前
CipherSage应助帕丁顿采纳,获得10
7秒前
万能图书馆应助dora采纳,获得10
8秒前
8秒前
8秒前
8秒前
lly完成签到,获得积分20
9秒前
Devin Irving发布了新的文献求助10
10秒前
SUHO完成签到,获得积分20
10秒前
叶文言发布了新的文献求助10
11秒前
热情紫丝发布了新的文献求助20
11秒前
11秒前
远荒发布了新的文献求助10
11秒前
12秒前
12秒前
WWwww发布了新的文献求助10
13秒前
所所应助111111111采纳,获得10
14秒前
14秒前
15秒前
hjygzv发布了新的文献求助10
15秒前
无极微光应助小梁要加油采纳,获得20
16秒前
王智慧完成签到,获得积分10
16秒前
王鑫完成签到 ,获得积分10
16秒前
爆米花应助认真的不评采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
自自自在发布了新的文献求助10
17秒前
April发布了新的文献求助10
17秒前
CodeCraft应助2t采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526777
求助须知:如何正确求助?哪些是违规求助? 4616768
关于积分的说明 14555797
捐赠科研通 4555282
什么是DOI,文献DOI怎么找? 2496282
邀请新用户注册赠送积分活动 1476561
关于科研通互助平台的介绍 1448126