Food Freshness Prediction Platform Utilizing Deep Learning-Based Multimodal Sensor Fusion of Volatile Organic Compounds and Moisture Distribution

深度学习 计算机科学 人工智能 传感器融合 过程(计算) 模式识别(心理学) 工艺工程 机器学习 环境科学 工程类 操作系统
作者
Zepeng Gu,Qinyan Xu,Xiaoyao Wang,Xianfeng Lin,Nuo Duan,Zhouping Wang,Shijia Wu
出处
期刊:ACS Sensors [American Chemical Society]
标识
DOI:10.1021/acssensors.5c00254
摘要

Various sensing methods have been developed for food spoilage research, but in practical applications, the accuracy of these methods is frequently constrained by the limitation of single-source data and challenges in cross-validating multimodal data. To address these issues, a new method combining multidimensional sensing technology with deep learning-based dynamic fusion has been developed, which can precisely monitor the spoilage process of beef. This study designs a gas sensor based on surface-enhanced Raman scattering (SERS) to directly analyze volatile organic compounds (VOCs) adsorbed on MIL-101(Cr) with amine-specific adsorption for data collection while also evaluating the moisture distribution of beef through low-field nuclear magnetic resonance (LF-NMR), providing multidimensional recognition and readings. By introducing the self-attention mechanism and SENet scaling features into the multimodal deep learning model, the system is able to adaptively fuse and focus on the important features of the sensors. After training, the system can predict the storage time of beef under controlled storage conditions, with an R2 value greater than 0.98. Furthermore, it can provide accurate freshness assessments for beef samples under unknown storage conditions. Relative to single-modality methods, accuracy improves from 90 to over 97%. Overall, the newly developed dynamic fusion deep learning multimodal model effectively integrates multimodal information, enabling the fast and reliable monitoring of beef freshness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心的百川完成签到 ,获得积分20
1秒前
丰富又亦完成签到,获得积分10
3秒前
Bblythe完成签到 ,获得积分10
3秒前
5秒前
Akim应助奔波儿灞采纳,获得10
6秒前
NexusExplorer应助硕shuo采纳,获得10
7秒前
AA发布了新的文献求助10
9秒前
july完成签到 ,获得积分10
10秒前
12秒前
丰富又亦发布了新的文献求助10
12秒前
奔波儿灞完成签到,获得积分20
15秒前
18秒前
lant0ng完成签到 ,获得积分10
18秒前
GH发布了新的文献求助10
23秒前
23秒前
泡泡完成签到 ,获得积分10
25秒前
pluto应助木木三采纳,获得20
25秒前
六六完成签到 ,获得积分10
26秒前
27秒前
苏苏苏发布了新的文献求助10
28秒前
谨慎的擎宇完成签到,获得积分10
31秒前
32秒前
33秒前
晏子完成签到,获得积分10
33秒前
河堤完成签到,获得积分10
35秒前
远江丠发布了新的文献求助10
37秒前
陶军辉完成签到 ,获得积分10
37秒前
科目三应助meng采纳,获得10
38秒前
快乐的小央完成签到,获得积分10
42秒前
xiaozheng完成签到,获得积分10
43秒前
夜已深完成签到,获得积分10
46秒前
1111111111111完成签到,获得积分10
47秒前
QiWei完成签到 ,获得积分10
49秒前
Yi发布了新的文献求助10
49秒前
50秒前
JC完成签到,获得积分10
51秒前
55秒前
57秒前
情怀应助科研通管家采纳,获得10
58秒前
Unicorn应助科研通管家采纳,获得50
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776730
求助须知:如何正确求助?哪些是违规求助? 3322167
关于积分的说明 10208975
捐赠科研通 3037401
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797622
科研通“疑难数据库(出版商)”最低求助积分说明 757921