Nonuniform data loss reconstruction based on time-series-specialized neural networks for structural health monitoring

计算机科学 数据丢失 数据包丢失 人工神经网络 系列(地层学) 时间序列 网络数据包 循环神经网络 算法 数据挖掘 人工智能 模式识别(心理学) 机器学习 计算机网络 古生物学 生物
作者
Peng Liu,Zhiyi Tang,Changxing Zhang,Xiaomin Huang,Wei Xu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217251321760
摘要

Data loss has been a realistic challenge in structural health monitoring, impacting the normal evaluation of structural performance and making it difficult to detect unusual changes based on incomplete data sets. Nonuniform data loss, such as random packet loss and channel-wise loss, which are commonly seen in practice, further increases the difficulty of data reconstruction problems. Time-series-specialized deep neural networks can learn complex inherent data features of long sequences, offering a promising ability to reconstruct nonuniform data loss. This paper models the data reconstruction as a matrix completion problem and proposes a time-series neural networks-based method for generating a complete data matrix. Four deep neural networks are investigated, that is, Informer, bidirectional long short-term memory (Bi-LSTM), long short-term memory (LSTM), and U-Net networks. Among these, the Informer was modified to adapt to this problem by aligning the inputs of the Informer’s encoder and decoder, resulting in a uniform feature extraction mechanism and dimension. The modified Informer can capture the spatiotemporal correlations and enable the direct generation of reconstructed data from incomplete data. The proposed method was validated using experimental data from the Third International Competition for Structural Health Monitoring (IC-SHM 2022) and the Xiamen Haicang Bridge monitoring data. Multiple data loss ratios and packet size were considered, focusing on two types of nonuniform data loss: random packet loss and channel-wise loss. The results show that when reconstructing data with the simultaneous complete loss of three sensors in Haicang Bridge, the average coefficients of determination ( R 2 ) obtained by Informer, Bi-LSTM, LSTM, and U-Net are 0.979, 0.732, 0.703, and 0.764, respectively. In addition, consistent mutual importance relationships between channels were inferred from channel-wise data loss reconstruction results. The proposed method will effectively solve the challenge of reconstructing nonuniform data missing in practical engineering, ensuring data completeness for subsequent analysis algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
penghui完成签到,获得积分10
1秒前
1秒前
情怀应助US采纳,获得10
1秒前
Sene完成签到,获得积分10
2秒前
3秒前
多情晓曼发布了新的文献求助10
4秒前
garrick发布了新的文献求助30
4秒前
5秒前
Ceceliayyy发布了新的文献求助150
5秒前
6秒前
蔺天宇完成签到,获得积分10
7秒前
情怀应助acc采纳,获得10
8秒前
US完成签到,获得积分10
8秒前
研友_VZG7GZ应助柳叶坚刀采纳,获得10
9秒前
香蕉觅云应助lmz采纳,获得10
9秒前
niu完成签到,获得积分10
9秒前
JamesPei应助小赵采纳,获得10
10秒前
10秒前
zh123完成签到,获得积分10
11秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
ding应助科研通管家采纳,获得10
13秒前
US发布了新的文献求助10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
七慕凉应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
knmno2应助科研通管家采纳,获得30
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800658
求助须知:如何正确求助?哪些是违规求助? 3346007
关于积分的说明 10328098
捐赠科研通 3062460
什么是DOI,文献DOI怎么找? 1680999
邀请新用户注册赠送积分活动 807337
科研通“疑难数据库(出版商)”最低求助积分说明 763627